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Affine symmetric group 
Joel Brewster Lewis¹*  

Abstract 
The affine symmetric group is a mathematical structure that describes the symmetries of the number line and the 
regular triangular tesselation of the plane, as well as related higher dimensional objects. It is an infinite extension 
of the symmetric group, which consists of all permutations (rearrangements) of a finite set. In addition to its geo-
metric description, the affine symmetric group may be defined as the collection of permutations of the integers 
(..., −2, −1, 0, 1, 2, ...) that are periodic in a certain sense, or in purely algebraic terms as a group with certain gen-
erators and relations. These different definitions allow for the extension of many important properties of the finite 
symmetric group to the infinite setting, and are studied as part of the fields of combinatorics and representation 
theory. 

 

Definitions 

The affine symmetric group, 𝑆̃𝑛, may be equivalently 
defined as an abstract group by generators and rela-
tions, or in terms of concrete geometric and combina-
torial models. 

Algebraic definition 

In terms of generators and relations, 𝑆̃𝑛  is generated 
by a set 

𝑠0, 𝑠1, …  , 𝑠𝑛−1 

of 𝑛 elements that satisfy the following relations: 
when 𝑛 ≥ 3,  

1. 𝑠𝑖
2 = 1 (the generators are involutions),  

2. 𝑠𝑖𝑠𝑗 = 𝑠𝑗𝑠𝑖 if 𝑗 is not one of 𝑖 − 1, 𝑖, 𝑖 + 1, and 

3. 𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1. 

In the relations above, indices are taken modulo n, so 
that the third relation includes as a particular case 
𝑠0𝑠𝑛−1𝑠0 = 𝑠𝑛−1𝑠0𝑠𝑛−1. (The second and third relation 
are sometimes called the braid relations.) When 𝑛 = 2, 

the affine symmetric group 𝑆̃2 is the infinite dihedral 
group generated by two elements 𝑠0, 𝑠1 subject only to 
the relations 𝑠0

2 = 𝑠1
2 = 1.[1] 

This definition endows 𝑆̃𝑛  with the structure of a Coxe-
ter group, with the 𝑠𝑖  as Coxeter generating set. For 𝑛 ≥
3, its Coxeter–Dynkin diagram is the 𝑛-cycle, while for 
𝑛 = 2 it consists of two nodes joined by an edge labeled 
∞.[2] 
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Non-technical summary 

Flat, straight-edged shapes (like triangles) or 3D ones 
(like pyramids) have only a finite number of symme-
tries. In contrast, the affine symmetric group is a way to 
mathematically describe all the symmetries possible 
when an infinitely large flat surface is covered by trian-
gular tiles. As with many subjects in mathematics, it can 
also be thought of in a number of ways: for example, it 
also describes the symmetries of the infinitely long 
number line, or the possible arrangements of all inte-
gers (..., −2, −1, 0, 1, 2, ...) with certain repetitive pat-
terns. As a result, studying the affine symmetric group 
extends the study of symmetries of straight-edged 
shapes or of groups of permutations to the infinite case. 
It also connects several topics in mathematics that 
were originally studied for independent reasons, rang-
ing from complex reflection groups to juggling se-
quences. 

 

Figure 1 | Dynkin diagrams for the affine symmetric groups on 
2 and more than 2 generators 
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Geometric definition 

In the Euclidean space ℝ𝑛 with coordinates (𝑥1, … , 𝑥𝑛), 
the set 𝑉 of points that satisfy the equation 𝑥1 + 𝑥2 +
⋯+ 𝑥𝑛 = 0 forms a (hyper)plane (an (𝑛 − 1)-dimen-
sional subspace). For every pair of distinct elements 𝑖 
and 𝑗 of {1, … , 𝑛} and every integer 𝑘, the set of points 
in 𝑉 that satisfy 𝑥𝑖 − 𝑥𝑗 = 𝑘 forms a plane in 𝑉, and 

there is a unique reflection of 𝑉 that fixes this plane. 
Then the affine symmetric group can be realized geo-
metrically as the collection of all maps from 𝑉 to itself 
that arise by composing several of these reflections.[3] 

Inside 𝑉, the type 𝐴 root lattice Λ is the subset of points 
with integer coordinates, that is, it is the set of all the 
integer vectors (𝑎1, … , 𝑎𝑛) such that 𝑎1 +⋯+ 𝑎𝑛 = 0. 
Each of the reflections preserves this lattice, and so the 
lattice is preserved by the whole group. In fact, one may 

define 𝑆̃𝑛  to be the group of rigid transformations of 𝑉 
that preserve the lattice Λ. 

These reflecting planes divide the space 𝑉 into congru-
ent simplicies, called alcoves.[4] The situation when  𝑛 =
3 is shown at right; in this case, the root lattice is a tri-
angular lattice, and the reflecting lines divide the plane 
into equilateral triangular alcoves. (For larger 𝑛, the al-
coves are not regular simplices.) 

To translate between the geometric and algebraic defi-
nitions, fix an alcove and consider the 𝑛 hyperplanes 
that form its boundary. For example, there is a unique 
alcove (the fundamental alcove) consisting of points 
(𝑥1, … , 𝑥𝑛) such that 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛 ≥ 𝑥1 − 1, 
which is bounded by the hyperplanes 𝑥1 −
𝑥2 = 0, 𝑥2 − 𝑥3 = 0, ..., and 𝑥1 − 𝑥𝑛 = 1. 
(This is illustrated in the case 𝑛 = 3 at 
right.) For 𝑖 = 1,… , 𝑛 − 1, one may iden-
tify the reflection through 𝑥𝑖 − 𝑥𝑖+1 = 0 
with the Coxeter generator 𝑠𝑖, and also 
identify the reflection through 𝑥1 − 𝑥𝑛 =
1 with the generator 𝑠0 = 𝑠𝑛.[4] 

Combinatorial definition 

The affine symmetric group may be real-
ized as a group of periodic permutations 
of the integers. In particular, say that a bi-
jection 𝑢: ℤ → ℤ is an affine permutation if 
𝑢(𝑥 + 𝑛) = 𝑢(𝑥) + 𝑛 for all integers 𝑥 
and 𝑢(1) + 𝑢(2) + ⋯+ 𝑢(𝑛) = 1 + 2 +
⋯+ 𝑛. (It is a consequence of the first 
property that the numbers 𝑢(1), … , 𝑢(𝑛) 
must all be distinct modulo 𝑛.) Such a 
function is uniquely determined by its win-
dow notation [𝑢(1), … , 𝑢(𝑛)], and so af-
fine permutations may also be identified 

with tuples [𝑢(1), … , 𝑢(𝑛)] of integers that contain one 
element from each congruence class modulo 𝑛 and sum 
to 1 + 2 +⋯+ 𝑛.[5] 

To translate between the combinatorial and algebraic 
definitions, for 𝑖 = 1,… , 𝑛 − 1 one may identify the 
Coxeter generator 𝑠𝑖  with the affine permutation that 
has window notation [1, 2, … , 𝑖 − 1, 𝑖 + 1, 𝑖, 𝑖 +
2,… , 𝑛], and also identify the generator 𝑠0 = 𝑠𝑛  with 
the affine permutation [0, 2, 3, … , 𝑛 − 2, 𝑛 − 1, 𝑛 + 1]. 
More generally, every reflection (that is, a conjugate of 

Figure 2 | When 𝑛 =  3, the space V is a two-dimensional 
plane and the reflections are across lines. The points of the 
type A root lattice are circled. 

Figure 3 | Reflections and alcoves for the affine symmetric group. The funda-
mental alcove is shaded. 
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one of the Coxeter generators) can be described 
uniquely as follows: for distinct integers 𝑖, 𝑗 in {1, … , 𝑛} 
and arbitrary integer 𝑘, it maps 𝑖 to 𝑗 − 𝑘𝑛, maps 𝑗 to 𝑖 + 
𝑘𝑛, and fixes all inputs not congruent to 𝑖 or 𝑗 modulo 
𝑛.[6] (In terms of the geometric definition, this corre-
sponds to the reflection across the plane 𝑥𝑖 − 𝑥𝑗 = 𝑘. 

The correspondence between the geometric and com-
binatorial representations for other elements is dis-
cussed below.) 

Representation as matrices 

One may represent affine permutations as infinite peri-
odic permutation matrices.[7] If 𝑢: ℤ → ℤ is an affine per-

mutation, one places the entry 1 at position (𝑖, 𝑢(𝑖)) in 

the infinite grid ℤ × ℤ for each integer 𝑖, and all other 
entries are equal to 0. Since 𝑢 is a bijection, the resulting 
matrix contains exactly one 1 in every row and column. 
The periodicity condition on the map 𝑢 ensures that the 
entry at position (𝑎, 𝑏) is equal to the entry at position 
(𝑎 + 𝑛, 𝑏 + 𝑛) for every pair of integers (𝑎, 𝑏). For ex-
ample, a portion of matrix for the affine permutation 
[2, 0, 4] ∈ 𝑆̃3 is shown below, with the conventions that 
1s are replaced by •, 0s are omitted, rows numbers in-
crease from top to bottom, column numbers increase 
from left to right, and the boundary of the box consist-
ing of rows and columns 1, 2, 3 is drawn: 

 

Relationship to the finite symmetric 
group 

Relationship to the finite symmetric group 

The affine symmetric group 𝑆̃𝑛  contains the finite sym-
metric group 𝑆𝑛  as both a subgroup and a quotient. 

As a subgroup 

There is a canonical way to choose a subgroup of 𝑆̃𝑛  that 
is isomorphic to the finite symmetric group 𝑆𝑛. In terms 

of the algebraic definition, this is the subgroup of 𝑆̃𝑛  
generated by 𝑠1, … , 𝑠𝑛−1 (excluding the simple reflec-
tion 𝑠0 = 𝑠𝑛). Geometrically, this corresponds to the 
subgroup of transformations that fix the origin, while 

combinatorially it corresponds to the window notations 
for which {𝑢(1), … , 𝑢(𝑛)} = {1, 2, … , 𝑛} (that is, in 
which the window notation is the one-line notation of a 
finite permutation).[8][3] 

If u = [𝑢(1), 𝑢(2), … , 𝑢(𝑛)] is the window notation of 

an element of this standard copy of 𝑆𝑛 ⊂ 𝑆̃𝑛, its action 
on the hyperplane 𝑉 in ℝ𝑛 is given by permutation of 
coordinates: (𝑥1, 𝑥2, … , 𝑥𝑛) ⋅ 𝑢 = (𝑥𝑢(1), 𝑥𝑢(2), … , 𝑥𝑢(𝑛)). 

(In this article, the geometric action of permutations 
and affine permutations is on the right; thus, if 𝑢 and 𝑣 
are two affine permutations, the action of 𝑢𝑣 on a point 
is given by first applying 𝑢, then applying 𝑣.) 

There are also many nonstandard copies of 𝑆𝑛  con-

tained in 𝑆̃𝑛. A geometric construction is to pick any 
point 𝑎 in Λ (that is, an integer vector whose coordi-

nates sum to 0); the subgroup (𝑆̃𝑛)𝑎  of 𝑆̃𝑛  of isometries 

that fix 𝑎 is isomorphic to 𝑆𝑛. The analogous combina-
torial construction is to choose any subset 𝐴 of ℤ that 
contains one element from each conjugacy class mod-
ulo 𝑛 and whose elements sum to 1 + 2 +⋯+ 𝑛; the 

subgroup (𝑆̃𝑛)𝐴 of 𝑆̃𝑛  of affine permutations that stabi-

lize 𝐴 is isomorphic to 𝑆𝑛. 

As a quotient 

There is a simple map (technically, a surjective group 

homomorphism) π from 𝑆̃𝑛  onto the finite symmetric 
group 𝑆𝑛. In terms of the combinatorial definition, it is 
to reduce the window entries modulo 𝑛 to elements of 
{1, 2, … , 𝑛}, leaving the one-line notation of a permuta-
tion. The image π(𝑢) of an affine permutation 𝑢 is 
called the underlying permutation of 𝑢. 

The map π sends the Coxeter generator 𝑠0 =
[0, 2, 3, 4, … , 𝑛 − 2, 𝑛 − 1, 𝑛 + 1] to the permutation 
whose one-line notation and cycle notation are 
[𝑛, 2, 3, 4, … , 𝑛 − 2, 𝑛 − 1, 1] and (1 𝑛), respectively. In 
terms of the Coxeter generators of 𝑆𝑛, this can be writ-
ten as π(𝑠0) = 𝑠1𝑠2⋯𝑠𝑛−2𝑠𝑛−1𝑠𝑛−2⋯𝑠2𝑠1. 

The kernel π is the set of affine permutations whose un-
derlying permutation is the identity. The window nota-
tions of such affine permutations are of the form 
[1 − 𝑎1 ⋅ 𝑛, 2 − 𝑎2 ⋅ 𝑛, … , 𝑛 − 𝑎𝑛 ⋅ 𝑛], where 
(𝑎1, 𝑎2, … , 𝑎𝑛) is an integer vector such that 𝑎1 + 𝑎2 +
⋯+ 𝑎𝑛 = 0, that is, where (𝑎1, … , 𝑎𝑛) ∈ Λ. Geometri-
cally, this kernel consists of the translations, that is, the 
isometries that shift the entire space 𝑉 without rotating 
or reflecting it. In an abuse of notation, the symbol Λ is 
used in this article for all three of these sets (integer vec-
tors in 𝑉, affine permutations with underlying permuta-
tion the identity, and translations); in all three settings, 
the natural group operation turns Λ into an abelian 
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group, generated freely by the 𝑛 − 1 vectors 
{(1, −1, 0, … , 0), (0, 1, −1,… , 0), … , (0, … , 0, 1, −1)}. 

Connection between the geometric and 
combinatorial definitions 

The subgroup Λ is a normal subgroup of 𝑆̃𝑛, and one has 
an isomorphism 

𝑆̃𝑛 ≅ 𝑆𝑛 ⋉ Λ 

between 𝑆̃𝑛  and the semidirect product of the finite 
symmetric group 𝑆𝑛  with Λ, where the action of 𝑆𝑛  on Λ 
is by permutation of coordinates. Consequently, identi-
fying the finite symmetric group 𝑆𝑛  as its standard copy 

in 𝑆̃𝑛, one has that every element 𝑢 of 𝑆̃𝑛  may be real-
ized uniquely as a product 𝑢 = 𝑟 ⋅ 𝑡 where 𝑟 ∈ 𝑆𝑛 is a fi-
nite permutation and 𝑡 ∈ Λ. 

This point of view allows for a direct translation be-
tween the combinatorial and geometric definitions of 

𝑆̃𝑛: if one writes [𝑢(1), … , 𝑢(𝑛)] = [𝑟1 − 𝑎1 ⋅ 𝑛, … , 𝑟𝑛 −
𝑎𝑛 ⋅ 𝑛] where 𝑟 = [𝑟1, … , 𝑟𝑛] = 𝜋(𝑢) and 
(𝑎1, 𝑎2, … , 𝑎𝑛) ∈ Λ then the affine permutation 𝑢 corre-
sponds to the rigid motion of 𝑉 defined by 

(𝑥1, … , 𝑥𝑛) ⋅ 𝑢 = (𝑥𝑟(1) + 𝑎1, … , 𝑥𝑟(𝑛) + 𝑎𝑛). 

Furthermore, as with every affine Coxeter group, the af-
fine symmetric group acts transitively and freely on the 
set of alcoves. Hence, by making an arbitrary choice of 
alcove 𝐴0, one may place the group in one-to-one cor-
respondence with the alcoves: the identity element cor-
responds to 𝐴0, and every other group element 𝑔 corre-
sponds to the alcove 𝐴 = 𝐴0 ⋅ 𝑔 that is the image of 𝐴0 

under the action of 𝑔. This identification for 𝑆̃3 is illus-
trated in Figure 4. 

Example: n = 2 

Algebraically, 𝑆̃2 is the infinite dihedral group, gener-
ated by two generators 𝑠0, 𝑠1 subject to the relations 
𝑠0
2 = 𝑠1

2 = 1. Every other element of the group can be 
written as an alternating product of copies of 𝑠0 and 𝑠1. 

Combinatorially, the affine permutation 𝑠1 has window 
notation [2, 1], corresponding to the bijection 2𝑘 ↦

Figure 4 | Alcoves for 𝑆̃3 labeled by af-
fine permutations. An alcove 𝐴 is la-
beled by the window notation for a 
permutation 𝑢 if 𝑢 sends the funda-
mental alcove (shaded) to 𝐴. Nega-
tive numbers are denoted by over-
bars. 

Figure 5 | The affine symmetric group 𝑆̃2 acts on the line 𝑉 in 
the Euclidean plane. The reflections are through the dashed 
lines. The vectors of the root lattice Λ are marked. 
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2𝑘 − 1, 2𝑘 − 1 ↦ 2𝑘 for every integer 𝑘. The affine 
permutation 𝑠0 has window notation [0, 3], corre-
sponding to the bijection 2𝑘 ↦ 2𝑘 + 1, 2𝑘 + 1 ↦ 2𝑘 
for every integer 𝑘. Other elements have the following 
window notations: 

• 𝑠0𝑠1⋯𝑠0𝑠1⏞      
2𝑘 factors

= [1 + 2𝑘, 2 − 2𝑘],  

• 𝑠1𝑠0⋯𝑠1𝑠0⏞      
2𝑘 factors

= [1 − 2𝑘, 2 + 2𝑘],  

• 𝑠0𝑠1⋯𝑠0⏞      
2𝑘+1 factors

= [2 + 2𝑘, 1 − 2𝑘],  

• 𝑠1𝑠0⋯𝑠1⏞      
2𝑘+1 factors

= [2 − 2(𝑘 + 1), 1 + 2(𝑘 + 1)]. 

Geometrically, the space 𝑉 is the line with equation 𝑥 +
𝑦 = 0 in the Euclidean plane ℝ2. The root lattice inside 
𝑉 consists of those pairs (𝑎, −𝑎) for integral 𝑎. The Cox-
eter generator 𝑠1 acts on 𝑉 by reflection across the line 
x = y (that is, across the origin); the generator 𝑠0 acts 
on 𝑉 by reflection across the line x = y + 1 (that is, 

across the point (
1

2
, −

1

2
). It is natural to identify the line 

𝑉 with the real line ℝ1, by sending the point (𝑥, −𝑥) to 
the real number 2x. With this identification, the root lat-
tice consists of the even integers; the fundamental al-

cove is the interval [0, 1]; the element (𝑠1𝑠0)
𝑘  acts by 

translation by 𝑘 for any integer 𝑘; and the reflection 

𝑠1(𝑠0𝑠1)
𝑘  reflects across the point −𝑘 for any integer 𝑘. 

Permutation statistics and 
permutation patterns 

Many permutation statistics and other features of the 
combinatorics of finite permutations can be extended 
to the affine case. 

Descents, length, and inversions 

The length ℓ(𝑔) of an element 𝑔 of a Coxeter group 𝐺 is 
the smallest number 𝑘 such that 𝑔 can be written as a 
product 𝑔 = 𝑠𝑖1⋯𝑠𝑖𝑘  of 𝑘 Coxeter generators of 𝐺.[9] 

Geometrically, the length of an element 𝑔 in S̃𝑛 is the 
number of reflecting hyperplanes that separate 𝐴0 and 
𝐴0 ⋅ 𝑔, where 𝐴0 is the fundamental alcove (the simplex 
bounded by the reflecting hyperplanes of the Coxeter 
generators 𝑠0, 𝑠1, … , 𝑠𝑛−1). (In fact, the same is true for 
any affine Coxeter group.)[10] 

Combinatorially, the length of an affine permutation is 
encoded in terms of an appropriate notion of inver-
sions. In particular, one has for an affine permutation 𝑢 
that[11] 

ℓ(𝑢) = #{(𝑖, 𝑗): 𝑖 ∈ {1,… , 𝑛}, 𝑖 < 𝑗,  and 𝑢(𝑖) > 𝑢(𝑗)}.  

Alternatively, it is the number of equivalence classes of 
pairs (𝑖, 𝑗) ∈ ℤ × ℤ such that 𝑖 < 𝑗 and 𝑢(𝑖) > 𝑢(𝑗) un-
der the equivalence relation (𝑖, 𝑗) ≡ (𝑖′, 𝑗′) if (𝑖 − 𝑖′, 𝑗 −
𝑗′) = (𝑘𝑛, 𝑘𝑛) for some integer 𝑘. 

The generating function for length in 𝑆̃𝑛  is[12][13] 

∑ 𝑞ℓ(𝑔)

𝑔∈𝑆
∼

𝑛

=
1 − 𝑞𝑛

(1 − 𝑞)𝑛
. 

Similarly, one may define an affine analogue of de-
scents in permutations: say that an affine permutation 
𝑢 has a descent in position 𝑖 if 𝑢(𝑖) > 𝑢(𝑖 + 1). (By pe-
riodicity, 𝑢 has a descent in position 𝑖 if and only if it has 
a descent in position 𝑖 + 𝑘𝑛 for all integers 𝑘.)[14] 

Algebraically, the descents corresponds to the right de-
scents in the sense of Coxeter groups; that is, 𝑖 is a de-
scent of 𝑢 if and only if ℓ(𝑢 ⋅ 𝑠𝑖) < ℓ(𝑢).

[14] The left de-
scents (that is, those indices 𝑖 such that ℓ(𝑠𝑖 ⋅ 𝑢) < ℓ(𝑢) 
are the descents of the inverse affine permutation 𝑢−1; 
equivalently, they are the values 𝑖 such that 𝑖 occurs be-
fore 𝑖 − 1 in the sequence … , 𝑢(−2), 𝑢(−1), 𝑢(0), 𝑢(1),  
𝑢(2), … . 

Geometrically, 𝑖 is a descent of 𝑢 if and only if the fixed 
hyperplane of 𝑠𝑖  separates the alcoves 𝐴0 and 𝐴0 ⋅ 𝑢. 

Because there are only finitely many possibilities for the 
number of descents of an affine permutation, but infi-
nitely many affine permutations, it is not possible to na-
ively form a generating function for affine permutations 
by number of descents (an affine analogue of Eulerian 
polynomials).[15] One possible resolution is to consider 
affine descents (equivalently, cyclic descents) in the fi-
nite symmetric group 𝑆𝑛.[16] Another is to consider sim-
ultaneously the length and number of descents of an af-
fine permutation. The generating function for these 

statistics over 𝑆̃𝑛  simultaneously for all 𝑛 is 

∑
𝑥𝑛

1 − 𝑞𝑛
𝑛≥1

∑ 𝑡𝑑𝑒𝑠(𝑤)

𝑤∈𝑆̃𝑛

𝑞ℓ(𝑤) = [
𝑥 ⋅

𝜕
𝜕𝑥

log(exp(𝑥; 𝑞))

1 − 𝑡exp(𝑥; 𝑞)
]

𝑥↦𝑥
1−𝑡
1−𝑞

 

where des(w) is the number of descents of the affine 

permutation 𝑊 and exp(𝑥; 𝑞) = ∑
𝑥𝑛(1−𝑞)𝑛

(1−𝑞)(1−𝑞2)⋯(1−𝑞𝑛)𝑛≥0  is 

the q-exponential function.[17] 

Cycle type and reflection length 

Any bijection 𝑢: ℤ → ℤ partitions the integers into a 
(possibly infinite) list of (possibly infinite) cycles: for 
each integer 𝑖, the cycle containing 𝑖 is the sequence 
(… , 𝑢−2(𝑖), 𝑢−1(𝑖), 𝑖, 𝑢(𝑖), 𝑢2(𝑖), … ) where exponentia-
tion represents functional composition. For example, 

the affine permutation in 𝑆̃5 with window notation 
[6, 3, 2, 0, 4] contains the two infinite cycles 
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(… ,−9,−4, 1, 6, 11,… ) and (… , 10, 9, 5, 4, 0, −1, −5…) 
as well as infinitely many finite cycles (5𝑘 + 2, 5𝑘 + 3) 
for each 𝑘 ∈ ℤ. Cycles of an affine permutation corre-
spond to cycles of the underlying permutation in an ob-
vious way: in the example above, with underlying per-
mutation [1, 3, 2, 5, 4] = (1)(23)(45), the first infinite 
cycle corresponds to the cycle (1), the second corre-
sponds to the cycle (45), and the finite cycles all corre-
spond to the cycle (23). 

For an affine permutation 𝑢, the following conditions 
are equivalent: all cycles of 𝑢 are finite, 𝑢 has finite or-
der, and the geometric action of 𝑢 on the space 𝑉 has 
at least one fixed point.[18] 

The reflection length ℓ𝑅(𝑢) of an element 𝑢 of 𝑆̃𝑛  is the 
smallest number 𝑘 such that there exist reflections 
𝑟1, … , 𝑟𝑘  such that 𝑢 = 𝑟1⋯𝑟𝑘. (In the symmetric group, 
reflections are transpositions, and the reflection length 
of a permutation 𝑢 is 𝑛 − 𝑐(𝑢), where 𝑐(𝑢) is the num-
ber of cycles of 𝑢.[19]) In (Lewis et al. 2019), the following 
formula was proved for the reflection length of an affine 
permutation 𝑢: for each cycle of 𝑢, define the weight to 
be the integer 𝑘 such that consecutive entries congru-
ent modulo 𝑛 differ by exactly 𝑘𝑛. (For example, in the 
permutation [6, 3, 2, 0, 4] above, the first infinite cycle 
has weight 1 and the second infinite cycle has weight 
−1; all finite cycles have weight 0.) Form a tuple of cycle 
weights of 𝑢 (counting translates of the same cycle by 
multiples of 𝑛 only once), and define the nullity ν(𝑢) to 
be the size of the smallest set partition of this tuple so 
that each part sums to 0. (In the example above, the tu-
ple is (1, −1, 0) and the nullity is 2, since one can take 
the partition (1, −1), (0).) Then the reflection length of 
𝑢 is 

ℓ𝑅(𝑢) = 𝑛 − 2𝜈(𝑢) + 𝑐(𝜋(𝑢)),  

where π(𝑢) is the underlying permutation of 𝑢.[20] 

For every affine permutation 𝑢, there is a choice of sub-

group 𝑊 of S̃𝑛  such that W ≅ 𝑆𝑛, 𝑆̃𝑛 = 𝑊 ⋉ Λ, and for 
the standard form 𝑢 = 𝑤 ⋅ 𝑡 implied by this semidirect 
product, one has ℓ𝑅(𝑢) = ℓ𝑅(𝑤) + ℓ𝑅(𝑡). 

Fully commutative elements and pattern 
avoidance 

A reduced word for an element 𝑔 of a Coxeter group is a 

tuple (𝑠𝑖1 , … , 𝑠𝑖ℓ(𝑔)) of Coxeter generators of minimum 

possible length such that 𝑔 = 𝑠𝑖1⋯𝑠𝑖ℓ(𝑔).
[9] The ele-

ment 𝑔 is called fully commutative if one can transform 
any reduced word into any other by sequentially swap-
ping pairs of factors that commute.[22] For example, in 
the finite symmetric group 𝑆4, the element 2143 =
(12)(34) is fully commutative, since its two reduced 

words (𝑠1, 𝑠3) and (𝑠3, 𝑠1) can be connected by swap-
ping commuting factors, but 3214 = (13)(2)(4) is not 
fully commutative because there is no way to reach the 
reduced word (𝑠2, 𝑠1, 𝑠2) starting from the reduced 
word (𝑠1, 𝑠2, 𝑠1) by commutations. 

Billey, Jockusch & Stanley (1993) proved that in the fi-
nite symmetric group 𝑆𝑛, a permutation is fully commu-
tative if and only if it avoids the permutation pattern 
321, that is, if and only if its one-line notation contains 
no three-term decreasing subsequence. In (Green 
2002), this result was extended to affine permutations: 
an affine permutation 𝑢 is fully commutative if and only 
if there do not exist integers 𝑖 < 𝑗 < 𝑘 such that 𝑢(𝑖) >
𝑢(𝑗) > 𝑢(𝑘).[a] 

It has also been shown that the number of affine permu-
tations avoiding a single pattern 𝑝 is finite if and only if 
𝑝 avoids the pattern 321,[24] so in particular there are in-
finitely many fully commutative affine permutations. 
These were enumerated by length in (Hanusa & Jones 
2010). 

Parabolic subgroups and other 
structures 

The parabolic subgroups of 𝑆̃𝑛  and their coset repre-
sentatives offer a rich combinatorial structure. Other 
aspects of the affine symmetric group, such as its Bru-
hat order and representation theory, may also be un-
derstood via combinatorial models. 

Parabolic subgroups, coset representatives 

A standard parabolic subgroup of a Coxeter group is a 
subgroup generated by a subset of its Coxeter generat-
ing set. The maximal parabolic subgroups are those 
that come from omitting a single Coxeter generator. In 

𝑆̃𝑛, all maximal parabolic subgroups are isomorphic to 
the finite symmetric group 𝑆𝑛. The subgroup generated 
by the subset {𝑠0, … , 𝑠𝑛−1} ∖ {𝑠𝑖} consists of those af-
fine permutations that stabilize the interval [𝑖 + 1, 𝑖 +
𝑛], that is, that map every element of this interval to an-
other element of the interval.[14] 

The non-maximal parabolic subgroups of 𝑆̃𝑛  are all iso-
morphic to parabolic subgroups of 𝑆𝑛, that is, to a 
Young subgroup 𝑆𝑎1 ×⋯× 𝑆𝑎𝑘  for some positive inte-

gers 𝑎1, … , 𝑎𝑘  with sum 𝑛. 

For a fixed element 𝑖 of {0, … , 𝑛 − 1}, let 𝐽 =
{𝑠0, … , 𝑠𝑛−1} ∖ {𝑠𝑖} be the maximal proper subset of 

Coxeter generators omitting 𝑠𝑖, and let (𝑆̃𝑛)𝐽  denote 

the parabolic subgroup generated by 𝐽. Every coset 𝑔 ⋅
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(𝑆̃𝑛)𝐽  has a unique element of minimum length. The 

collection of such representatives, denoted (𝑆̃𝑛)
𝐽

, con-

sists of the following affine permutations:[14] 

(𝑆̃𝑛)
𝐽
= {𝑢 ∈ 𝑆̃𝑛: 𝑢(𝑖 − 𝑛 + 1) < 𝑢(𝑖 − 𝑛 + 2) < ⋯

< 𝑢(𝑖 − 1) < 𝑢(𝑖)}. 

In the particular case that 𝐽 = {𝑠1, … , 𝑠𝑛−1}, so that 

(𝑆̃𝑛)𝐽 ≅ 𝑆𝑛  is the standard copy of 𝑆𝑛  inside 𝑆̃𝑛, the ele-

ments of (𝑆̃𝑛)
𝐽
≅ 𝑆̃𝑛/𝑆𝑛  may naturally be represented 

by abacus diagrams: the integers are arranged in an in-
finite strip of width 𝑛, increasing sequentially along 
rows and then from top to bottom; integers are circled 
if they lie directly above one of the window entries of 
the minimal coset representative. For example, the 
minimal coset representative 𝑢 = [−5, 0, 6, 9] is repre-
sented by the abacus diagram in figure 6. To compute 
the length of the representative from the abacus dia-
gram, one adds up the number of uncircled numbers 
that are smaller than the last circled entry in each col-
umn. (In the example shown, this gives 5 + 3 + 0 + 1 =
9.)[25] 

Other combinatorial models of minimum-length coset 

representatives for 𝑆̃𝑛/𝑆𝑛 can be given in terms of core 
partitions (integer partitions in which no hook length is 
divisible by 𝑛) or bounded partitions (integer partitions 
in which no part is larger than 𝑛 − 1). Under these corre-
spondences, it can be shown that the weak Bruhat or-

der on 𝑆̃𝑛/𝑆𝑛 is isomorphic to a certain subposet of 
Young's lattice.[26][27] 

Bruhat order 

The Bruhat order on 𝑆̃𝑛  has the following combinatorial 
realization. If 𝑢 is an affine permutation and 𝑖 and 𝑗 are 
integers, define 𝑢[𝑖, 𝑗] to be the number of integers a 
such that 𝑎 ≤ 𝑖 and 𝑢(𝑎) ≥ 𝑗. (For example, with 𝑢 =
[2, 0, 4] ∈ 𝑆̃3, one has 𝑢[3, 1] = 3: the three relevant 

values are 𝑎 = 0, 1, 3, which are respectively mapped 
by 𝑢 to 1, 2, and 4.) Then for two affine permutations 𝑢, 
𝑣, one has that 𝑢 ≤ 𝑣 in Bruhat order if and only if 
𝑢[𝑖, 𝑗] ≤ 𝑣[𝑖, 𝑗] for all integers 𝑖, 𝑗.[28] 

Representation theory and an affine Robin-
son–Schensted correspondence 

In the finite symmetric group, the Robinson–Schensted 
correspondence gives a bijection between the group 
and pairs (𝑃, 𝑄) of standard Young tableaux of the 
same shape. This bijection plays a central role in the 
combinatorics and the representation theory of the 
symmetric group. For example, in the language of Ka-
zhdan–Lusztig theory, two permutations lie in the same 
left cell if and only if their images under Robinson–
Schensted have the same tableau 𝑄, and in the same 
right cell if and only if their images have the same tab-
leau 𝑃. In (Shi 1986), J.-Y. Shi showed that left cells for 

𝑆̃𝑛  are indexed instead by tabloids,[b] and in (Shi 1991) 
he gave an algorithm to compute the tabloid analogous 
to the tableau 𝑃 for an affine permutation. In (Chmutov, 
Pylyavskyy & Yudovina 2018), the authors extended 

Shi's work to give a bijective map between 𝑆̃𝑛  and tri-
ples (𝑃, 𝑄, 𝜌) consisting of two tabloids of the same 
shape and an integer vector whose entries satisfy cer-
tain inequalities. Their procedure uses the matrix repre-
sentation of affine permutations and generalizes the 
shadow construction of Viennot (1977). 

Inverse realizations 

In some situations, one may wish to consider the action 
of the affine symmetric group on ℤ or on alcoves that is 
inverse to the one given above.[c] We describe these al-
ternate realizations now. 

In the combinatorial action of 𝑆̃𝑛  on ℤ, the generator 𝑠𝑖  
acts by switching the values 𝑖 and 𝑖 +  1. In the inverse 
action, it instead switches the entries in positions 𝑖 and 
𝑖 +  1. Similarly, the action of a general reflection will 
be to switch the entries at   and 𝑖 +  𝑘𝑛 for each 𝑘, fixing 
all inputs at positions not congruent to 𝑖 or 𝑗 modulo 
𝑛.[29] (In the finite symmetric group 𝑆𝑛, the analogous 
distinction is between the active and passive forms of a 
permutation.[30]) 

In the geometric action of 𝑆̃𝑛, the generator 𝑠𝑖  acts on 
an alcove 𝐴 by reflecting it across one of the bounding 
planes of the fundamental alcove 𝐴0. In the inverse ac-
tion, it instead reflects 𝐴 across one of its own bounding 
planes. From this perspective, a reduced word corre-
sponds to an alcove walk on the tesselated space 𝑉.[31] 

Figure 6 | Abacus diagram 
of the affine permutation 
[−5, 0, 6, 9]. 
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Relationship to other mathematical 
objects 

The affine symmetric group is closely related to a vari-
ety of other mathematical objects. 

Juggling patterns 

In (Ehrenborg & Readdy 1996), a correspondence is 
given between affine permutations and juggling pat-
terns encoded in a version of siteswap notation.[32] 
Here, a juggling pattern of period 𝑛 is a sequence 
(𝑎1, … , 𝑎𝑛) of nonnegative integers (with certain re-
strictions) that captures the behavior of balls thrown by 
a juggler, where the number 𝑎𝑖  indicates the length of 
time the 𝑖th throw spends in the air (equivalently, the 
height of the throw).[d] The number 𝑏 of balls in the pat-

tern is the average 𝑏 =
𝑎1+⋯+𝑎𝑛

𝑛
.[34] The Ehrenborg–Re-

addy correspondence associates to each juggling pat-
tern 𝐚 = (𝑎1, … , 𝑎𝑛) of period 𝑛 the function 𝑤𝐚: ℤ → ℤ 
defined by 

𝑤𝒂(𝑖) = 𝑖 + 𝑎𝑖 − 𝑏,  

where indices of the sequence a are taken modulo 𝑛. 

Then 𝑤𝐚 is an affine permutation in 𝑆̃𝑛, and moreover 
every affine permutation arises from a juggling pattern 
in this way.[32] Under this bijection, the length of the af-
fine permutation is encoded by a natural statistic in the 
juggling pattern: one has 

ℓ(𝑤𝒂) = (𝑏 − 1)𝑛 − 𝑐𝑟𝑜𝑠𝑠(𝒂),  

where cross(𝐚) is the number of crossings (up to perio-
dicity) in the arc diagram of a. This allows an elementary 
proof of the generating function for affine permuta-
tions by length.[35] 

For example, the juggling pattern 441 (Figures 8 & 9) has 

𝑛 = 3 and 𝑏 =
4+4+1

3
= 3. Therefore, it corresponds to 

the affine permutation 𝑤441 = [1 + 4 − 3, 2 + 4 −
3, 3 + 1 − 3] = [2, 3, 1]. The juggling pattern has four 
crossings, and the affine permutation has length 
ℓ(𝑤441) = (3 − 1) ⋅ 3 − 4 = 2. 

Similar techniques can 
be used to derive the 
generating function for 
minimal coset repre-

sentatives of 𝑆̃𝑛/𝑆𝑛 by 
length.[36] 

Figure 7 | Alcoves for 𝑆̃3 labeled 
by affine permutations, inverse 
to the labeling above. 

Figure 8 | The juggling pattern 441 visualized as an arc diagram: the height of each throw 
corresponds to the length of an arc; the two colors of nodes are the left and right hands of 
the juggler. This pattern has four crossings, which repeat periodically. 

Figure 9 | The juggling pattern 
441. For video, follow this link: 
https://commons.wikimedia 
.org/wiki/File:Juggling_441.gif 
Nummer9, CC BY SA 3.0 

https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#CITEREFEhrenborgReaddy1996
https://en.wikipedia.org/wiki/juggling_pattern
https://en.wikipedia.org/wiki/juggling_pattern
https://en.wikipedia.org/wiki/siteswap_notation
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#cite_note-FOOTNOTEPolster200342-37
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#cite_note-39
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#cite_note-FOOTNOTEPolster200315-40
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#cite_note-FOOTNOTEPolster200342-37
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#cite_note-FOOTNOTEPolster200343-41
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#cite_note-FOOTNOTEClarkEhrenborg2011Theorem_2.2-42
https://en.wikipedia.org/wiki/441_(juggling)
https://commons.wikimedia.org/wiki/File:Juggling_441.gif
https://commons.wikimedia.org/wiki/File:Juggling_441.gif
https://creativecommons.org/licenses/by/3.0/deed.en
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Affine_symmetric_group#Figure_9


WikiJournal of Science, 2021, 4(1):3 
doi: 10.15347/wjs/2021.003 

Encyclopedic Review Article 
   

 

9 of 11 | WikiJournal of Science  

Complex reflection groups  

In a finite-dimensional real inner product space, a reflec-
tion is a linear transformation that fixes a linear hyper-
plane pointwise and negates the vector orthogonal to 
the plane. This notion may be extended to vector 
spaces over other fields. In particular, in a complex inner 
product space, a reflection is a unitary transformation 𝑇 
of finite order that fixes a hyperplane.[e] This implies 
that the vectors orthogonal to the hyperplane are ei-
genvectors of 𝑇, and the associated eigenvalue is a 
complex root of unity. 𝐴 complex reflection group is a fi-
nite group of linear transformations on a complex vec-
tor space generated by reflections. 

The complex reflection groups were fully classified by 
Shephard & Todd (1954): each complex reflection 
group is isomorphic to a product of irreducible complex 
reflection groups, and every irreducible either belongs 
to an infinite family 𝐺(𝑚, 𝑝, 𝑛) (where 𝑚, 𝑝, and 𝑛 are 
positive integers such that 𝑝 divides 𝑚) or is one of 34 
other (so-called "exceptional") examples. The group 
𝐺(𝑚, 1, 𝑛) is the generalized symmetric group: algebra-
ically, it is the wreath product (ℤ/𝑚ℤ) ≀ 𝑆𝑛  of the cyclic 
group ℤ/𝑚ℤ with the symmetric group 𝑆𝑛. Concretely, 
the elements of the group may be represented by mo-
nomial matrices (matrices having one nonzero entry in 
every row and column) whose nonzero entries are all 
mth roots of unity. The groups 𝐺(𝑚, 𝑝, 𝑛) are subgroups 
of 𝐺(𝑚, 1, 𝑛), and in particular the group 𝐺(𝑚,𝑚, 𝑛) 
consists of those matrices in which the product of the 
nonzero entries is equal to 1. 

In (Shi 2002), Shi showed that the affine symmetric 
group is a generic cover of the family {𝐺(𝑚,𝑚, 𝑛):𝑚 ≥
1}, in the following sense: for every positive integer 𝑚, 

there is a surjection 𝜋𝑚 from 𝑆̃𝑛  to 𝐺(𝑚,𝑚, 𝑛), and 
these maps are compatible with the natural surjections 
𝐺(𝑚,𝑚, 𝑛) ↠ 𝐺(𝑝, 𝑝, 𝑛) when 𝑝 ∣ 𝑚 that come from 
raising each entry to the 𝑚/𝑝th power. Moreover, these 
projections respect the reflection group structure, in 

that the image of every reflection in 𝑆̃𝑛  under 𝜋𝑚 is a 
reflection in 𝐺(𝑚,𝑚, 𝑛); and similarly when 𝑚 > 1 the 
image of the standard Coxeter element 𝑠0 ⋅ 𝑠1⋯𝑠𝑛−1 in 

𝑆̃𝑛  is a Coxeter element in 𝐺(𝑚,𝑚, 𝑛).[37] 

Affine Lie algebras 

Each affine Coxeter group is associated to an affine Lie 
algebra, a certain infinite-dimensional non-associative 
algebra with unusually nice representation-theoretic 
properties. In this association, the Coxeter group arises 
as a group of symmetries of the root space of the Lie 
algebra (the dual of the Cartan subalgebra).[38] In the 
classification of affine Lie algebras, the one associated 

to 𝑆̃𝑛  is of (untwisted) type 𝐴𝑛−1
(1) , with Cartan matrix 

[
2 −2
−2 2

] for 𝑛 = 2 and 

[
 
 
 
 
 
2 −1 0 ⋯ 0 −1
−1 2 −1 ⋯ 0 0
0 −1 2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 2 −1
−1 0 0 ⋯ −1 2 ]

 
 
 
 
 

 

(a circulant matrix) for 𝑛 > 2.[39] 

Like other Kac–Moody algebras, affine Lie algebras sat-
isfy the Weyl–Kac character formula, which expresses 
the characters of the algebra in terms of their highest 
weights.[40] In the case of affine Lie algebras, the result-
ing identities are equivalent to the Macdonald identi-

ties. In particular, for the affine Lie algebra of type 𝐴1
(1), 

associated to the affine symmetric group 𝑆̃2, the corre-
sponding Macdonald identity is equivalent to the Jacobi 
triple product.[41] 

Extended affine symmetric group 

The affine symmetric group is a subgroup of the ex-
tended affine symmetric group. The extended group is 
isomorphic to the wreath product ℤ ≀ 𝑆𝑛. Its elements 
are extended affine permutations: bijections 𝑢: ℤ → ℤ 
that 𝑢(𝑥 + 𝑛) = 𝑢(𝑥) + 𝑛 for all integers 𝑥. Unlike the 
affine symmetric group, the extended affine symmetric 
group is not a Coxeter group. However, it has a natural 
generating set that extends the Coxeter generating set 

for 𝑆̃𝑛: the shift operator τ whose window notation is 
τ = [2, 3, … , 𝑛, 𝑛 + 1] generates the extended group 
with the simple reflections, subject to the additional re-
lations τ𝑠𝑖τ

−1 = 𝑠𝑖+1.[7] 

Combinatorics of other affine Coxeter 
groups 

The geometric action of the affine symmetric group 𝑆̃𝑛  
places it naturally in the family of affine Coxeter groups, 
all of which have a similar geometric action. The combi-

natorial description of the 𝑆̃𝑛  may also be extended to 
many of these groups: in (Eriksson & Eriksson 1998), an 
axiomatic description is given of certain permutation 
groups acting on ℤ (the "George groups", in honor of 
George Lusztig), and it is shown that they are exactly 
the "classical" Coxeter groups of finite and affine types 
A, B, C, and D. Thus, the combinatorial interpretations 
of descents, inversions, etc., carry over in these 
cases.[42] Abacus models of minimum-length coset rep-
resentatives for parabolic quotients have also been ex-
tended to this context.[43] 
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1. Björner & Brenti (2005), p. 17. 
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4. Humphreys (1990), Section 4.3. 
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13. Björner & Brenti (1996), Cor. 4.7. 
14. Björner & Brenti (2005), p. 263. 
15. Reiner (1995), p. 2. 
16. Petersen (2015), Chapter 14. 
17. Reiner (1995), Theorem 6. 
18. Lewis et al. (2019), Propositions 1.31 and 4.24. 
19. Lewis et al. (2019). 
20. Lewis et al. (2019), Theorem 4.25. 
21. Lewis et al. (2019), Corollary 2.5. 
22. Stembridge (1996), p. 353. 
23. Hanusa & Jones (2010), p. 1345. 
24. Crites (2010), Theorem 1. 
25. Hanusa & Jones (2010), Section 2.2. 
26. Lapointe & Morse (2005). 
27. Berg, Jones & Vazirani (2009). 
28. Björner & Brenti (2005), p. 264. 
29. Knutson, Lam & Speyer (2013), Section 2.1. 
30. As in (Cameron 1994, Section 3.5). 
31. As in, for example, (Beazley et al. 2015), (Lam 2015). 
32. Polster (2003), p. 42. 
33. Polster (2003), p. 22. 
34. Polster (2003), p. 15. 
35. Polster (2003), p. 43. 
36. Clark & Ehrenborg (2011), Theorem 2.2. 
37. Lewis (2020), Section 3.2. 
38. Kac (1990), Chapter 3. 
39. Kac (1990), Chapter 4. 
40. Kac (1990), Chapter 10. 
41. Kac (1990), Chapter 12. 
42. Björner & Brenti (2005), Chapter 8. 
43. Hanusa & Jones (2012). 
44. The three positions 𝑖, 𝑗, and 𝑘 need not lie in a single window. For example, 

the affine permutation 𝑊 in 𝑆4 with window notation [−4,−1, 1, 14] is not 
fully commutative, because w(0) = 10, w(3) = 1, and w(5) = 0, even 
though no four consecutive positions contain a decreasing subsequence of 
length three.[23] 

45. In a standard Young tableau, entries increase across rows and down 
columns; in a tabloid, they increase across rows, but there is no column 
condition. 

46. In other words, one might be interested in switching from a left group 
action to a right action or vice-versa. 

47. Not every sequence of 𝑛 nonnegative integers is a juggling sequence. In 
particular, a sequence corresponds to a "simple juggling pattern", with one 
ball caught and thrown at a time, if and only if the function 𝑖 ↦ 𝑖 +
𝑎𝑖  mod  𝑛 is a permutation of {1, … , 𝑛}.[33] 

48. In some sources, unitary reflections are called pseudoreflections. 
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