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The Hippocampus 
Marion Wright* et al. 

Abstract 
The hippocampus (named after its resemblance to the seahorse, from the Greek ἱππόκαμπος, "seahorse" from 
ἵππος hippos, "horse" and κάμπος kampos, "sea monster") is a major component of the brains of humans and other 
vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. It belongs to the 
limbic system and plays important roles in the consolidation of information from short-term memory to long-term 
memory and spatial memory that enables navigation. The hippocampus is located under the cerebral cortex; 
(allocortical)[1][2][3] and in primates it is located in the medial temporal lobe, underneath the cortical surface. It con-
tains two main interlocking parts: the hippocampus proper (also called Ammon's horn)[4] and the dentate gyrus. 

In Alzheimer's disease (and other forms of dementia), the hippocampus is one of the first regions of the brain to 
suffer damage; short-term memory loss and disorientation are included among the early symptoms. Damage to 
the hippocampus can also result from oxygen starvation (hypoxia), encephalitis, or medial temporal lobe epilepsy. 
People with extensive, bilateral hippocampal damage may experience anterograde amnesia (the inability to form 
and retain new memories). 

In rodents as model organisms, the hippocampus has been studied extensively as part of a brain system responsi-
ble for spatial memory and navigation. Many neurons in the rat and mouse hippocampus respond as place cells: 
that is, they fire bursts of action potentials when the animal passes through a specific part of its environment. 
Hippocampal place cells interact extensively with head direction cells, whose activity acts as an inertial compass, 
and conjecturally with grid cells in the neighboring entorhinal cortex. 

Since different neuronal cell types are neatly organized into layers in the hippocampus, it has frequently been used 
as a model system for studying neurophysiology. The form of neural plasticity known as long-term potentiation 
(LTP) was first discovered to occur in the hippocampus and has often been studied in this structure. LTP is widely 
believed to be one of the main neural mechanisms by which memories are stored in the brain. 

 

Name 

The earliest description of the ridge running along the 
floor of the temporal horn of the lateral ventricle comes 
from the Venetian anatomist Julius Caesar Aranzi 
(1587), who likened it first to a silkworm and then to a 
seahorse (Latin: hippocampus from Greek: ἵππος, 
"horse" and κάμπος, "sea monster"). The German anat-
omist Duvernoy (1729), the first to illustrate the struc-
ture, also wavered between "seahorse" and "silkworm." 
"Ram's horn" was proposed by the Danish anatomist Ja-
cob Winsløw in 1732; and a decade later his fellow Pa-
risian, the surgeon de Garengeot, used "cornu Am-
monis" – horn of (the ancient Egyptian god) Amun,[5] 
who was often represented as having a ram's head.[6] 
This has survived in abbreviated form as CA in naming 
the subfields of the hippocampus. 

Another reference appeared with the term pes hippo-
campi, which may date back to Diemerbroeck in 1672, 
introducing a comparison with the shape of the folded 
back forelimbs and webbed feet of the mythological 
hippocampus, a sea monster with a horse's forequarters 
and a fish's tail. The hippocampus was then described 
as pes hippocampi major, with an adjacent bulge in the 
occipital horn, described as the pes hippocampi minor 
and later renamed as the calcar avis.[5][7] The renaming 
of the hippocampus as hippocampus major, and the cal-
car avis as hippocampus minor, has been attributed to 
Félix Vicq-d'Azyr systematising nomenclature of parts 
of the brain in 1786. Mayer mistakenly used the term 
hippopotamus in 1779, and was followed by some other 
authors until Karl Friedrich Burdach resolved this error 
in 1829. In 1861 the hippocampus minor became the 
centre of a dispute over human evolution between 
Thomas Henry Huxley and Richard Owen, satirised as 

*Author correspondence: by online form 

Licensed under: CC-BY-SA 

Received 10-10-2016; accepted 11-03-2017 

https://doi.org/10.15347/wjm/2017.003
https://tools.wmflabs.org/xtools/wikihistory/wh.php?page%2520title=Hippocampus
https://en.wikipedia.org/wiki/seahorse
https://en.wikipedia.org/wiki/Ancient%2520Greek
https://en.wikipedia.org/wiki/brain
https://en.wikipedia.org/wiki/human
https://en.wikipedia.org/wiki/vertebrates
https://en.wikipedia.org/wiki/cerebral%2520hemisphere
https://en.wikipedia.org/wiki/limbic%2520system
https://en.wikipedia.org/wiki/short-term%2520memory
https://en.wikipedia.org/wiki/long-term%2520memory
https://en.wikipedia.org/wiki/long-term%2520memory
https://en.wikipedia.org/wiki/spatial%2520memory
https://en.wikipedia.org/wiki/cerebral%2520cortex
https://en.wikipedia.org/wiki/allocortex
https://en.wikipedia.org/wiki/medial%2520temporal%2520lobe
https://en.wikipedia.org/wiki/Hippocampus%2520proper
https://en.wikipedia.org/wiki/dentate%2520gyrus
https://en.wikipedia.org/wiki/Alzheimer%27s%2520disease
https://en.wikiversity.org/wiki/Dementia
https://en.wikipedia.org/wiki/short-term%2520memory
https://en.wikipedia.org/wiki/disorientation
https://en.wikipedia.org/wiki/Hypoxia%2520(medical)
https://en.wikipedia.org/wiki/hypoxia%2520(medical)
https://en.wikipedia.org/wiki/encephalitis
https://en.wikipedia.org/wiki/medial%2520temporal%2520lobe%2520epilepsy
https://en.wikipedia.org/wiki/anterograde%2520amnesia
https://en.wikipedia.org/wiki/memory
https://en.wikipedia.org/wiki/rodent
https://en.wikipedia.org/wiki/model%2520organism
https://en.wikipedia.org/wiki/spatial%2520memory
https://en.wikipedia.org/wiki/neuron
https://en.wikipedia.org/wiki/Rattus%2520norvegicus
https://en.wikipedia.org/wiki/Mus%2520musculus
https://en.wikipedia.org/wiki/place%2520cell
https://en.wikipedia.org/wiki/action%2520potential
https://en.wikipedia.org/wiki/head%2520direction%2520cells
https://en.wikipedia.org/wiki/grid%2520cells
https://en.wikipedia.org/wiki/entorhinal%2520cortex
https://en.wikipedia.org/wiki/List%2520of%2520distinct%2520cell%2520types%2520in%2520the%2520adult%2520human%2520body#Nervous%2520system
https://en.wikipedia.org/wiki/Scientific%2520modelling
https://en.wikipedia.org/wiki/neurophysiology
https://en.wikipedia.org/wiki/synaptic%2520plasticity
https://en.wikipedia.org/wiki/long-term%2520potentiation
https://en.wikipedia.org/wiki/Lateral%2520ventricles#Structure
https://en.wikipedia.org/wiki/Julius%2520Caesar%2520Aranzi
https://en.wikipedia.org/wiki/Bombyx%2520mori
https://en.wikipedia.org/wiki/seahorse
https://en.wikipedia.org/wiki/Latin%2520language
https://en.wikipedia.org/wiki/Greek%2520language
https://en.wikipedia.org/wiki/Jacob%2520B.%2520Winslow
https://en.wikipedia.org/wiki/Jacob%2520B.%2520Winslow
https://en.wikipedia.org/wiki/Amun
https://en.wikipedia.org/wiki/pes%2520hippocampi
https://en.wikipedia.org/wiki/pes%2520hippocampi
https://en.wikipedia.org/wiki/IJsbrand%2520van%2520Diemerbroeck
https://en.wikipedia.org/wiki/Hippocampus%2520(mythology)
https://en.wikipedia.org/wiki/Hippocampus%2520(mythology)
https://en.wikipedia.org/wiki/Lateral%2520ventricles#Structure
https://en.wikipedia.org/wiki/calcar%2520avis
https://en.wikipedia.org/wiki/F%C3%A9lix%2520Vicq-d%27Azyr
https://en.wikipedia.org/wiki/Johann%2520Christoph%2520Andreas%2520Mayer
https://en.wikipedia.org/wiki/hippopotamus
https://en.wikipedia.org/wiki/Karl%2520Friedrich%2520Burdach
https://en.wikipedia.org/wiki/human%2520evolution
https://en.wikipedia.org/wiki/Thomas%2520Henry%2520Huxley
https://en.wikipedia.org/wiki/Richard%2520Owen
https://creativecommons.org/licenses/by-sa/4.0/


WikiJournal of Medicine, 2017, 4(1):3 
doi: 10.15347/wjm/2017.003 
Encyclopedic Review Article 

   
 

2 of 14 | WikiJournal of Medicine  

the Great Hippocampus Question. The term hippocam-
pus minor fell from use in anatomy textbooks, and was 
officially removed in the Nomina Anatomica of 1895.[8] 
Today, the structure is just called the hippocampus,[5] 
with the term Cornu Ammonis surviving in the names of 
the hippocampal subfields CA1–CA4.[9] 

The term limbic system was introduced in 1952 by Paul 
MacLean[10] to describe the set of structures that line 
the edge of the cortex (Latin limbus meaning border): 
These include the hippocampus, cingulate cortex, olfac-
tory cortex, and amygdala. Paul MacLean later sug-
gested that the limbic structures comprise the neural 
basis of emotion. The hippocampus is anatomically 
connected to parts of the brain that are involved with 
emotional behavior—the septum, the hypothalamic 
mammillary body, and the anterior nuclear complex in 
the thalamus, and is generally accepted to be part of the 
limbic system.[11]  

Anatomy 

The hippocampus can be seen as a ridge of gray matter 
tissue, elevating from the floor of each lateral ventricle 
in the region of the inferior or temporal horn.[12][13] This 
ridge can also be seen as an inward fold of the ar-
chicortex into the medial temporal lobe.[14] The hippo-
campus can only be seen in dissections as it is concealed 
by the parahippocampal gyrus.[14][15] The cortex thins 
from six layers to the three or four layers that make up 
the hippocampus.[16] 

The term hippocampal formation is used to refer to the 
hippocampus proper and its related parts. However, 
there is no consensus as to what parts are included. 
Sometimes the hippocampus is said to include the den-
tate gyrus and the subiculum. Some references include 

the dentate gyrus and the subiculum in the hippocam-
pal formation,[1] and others also include the presubicu-
lum, parasubiculum, and entorhinal cortex.[2] The neu-
ral layout and pathways within the hippocampal for-
mation are very similar in all mammals.[3] 

The hippocampus, including the dentate gyrus, has the 
shape of a curved tube, which has been compared to a 
seahorse, and a ram's horn (Cornu Ammonis). Its abbre-
viation CA is used in naming the hippocampal subfields: 
CA1, CA2, CA3, and CA4.[15] It can be distinguished as an 
area where the cortex narrows into a single layer of 
densely packed pyramidal neurons, which curl into a 
tight U shape. One edge of the "U," – CA4, is embedded 
into the backward-facing, flexed dentate gyrus. The 
hippocampus is described as having an anterior and 
posterior part (in primates) or a ventral and dorsal part 
in other animals. Both parts are of similar composition 
but belong to different neural circuits.[17] In the rat, the 
two hippocampi resemble a pair of bananas, joined at 
the stems by the commissure of fornix (also called the 
hippocampal commissure). In primates, the part of the 
hippocampus at the bottom, near the base of the tem-
poral lobe, is much broader than the part at the top. 

 

Figure 1 | The human hippocampus and fornix compared with 
a seahorse. László Seress, modified by AnthonyHCole, CC-BY-
SA 3.0 

Figure 2 | Cross-section of cerebral hemisphere showing 
structure and location of hippocampus. Johannes Sobotta, 
public domain 
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This means that in cross-section the hippocampus can 
show a number of different shapes, depending on the 
angle and location of the cut. 

In cross-section of the hipppocampus, including the 
dentate gyrus, several layers will be shown. The dentate 
gyrus has three layers of cells (or four if the hilus is in-
cluded). The layers are from the outer in - the molecular 
layer, the inner molecular layer, the granular layer, and 
the hilus. The CA3 in the hippocampus proper has the 
following cell layers known as strata: lacunosum-mo-
leculare, radiatum, lucidum, pyramidal, and oriens. CA2 
and CA1 also have four each of these layers and not the 
lucidum stratum. 

The input to the hippocampus (from varying cortical 
and subcortical structures) comes from the entorhinal 
cortex via the perforant path. The entorhinal cortex 
(EC) is strongly and reciprocally connected with many 
cortical and subcortical structures as well as with the 
brainstem. Different thalamic nuclei, (from the anterior 
and midline groups), the medial septal nucleus, the su-
pramamillary nucleus of the hypothalamus, and the ra-
phe nuclei and locus coeruleus of the brainstem all send 
axons to the EC, so that it serves as the interface be-
tween the neocortex and the other connections, and 
the hippocampus. 

The EC, is located in the parahippocampal gyrus,[2] a 
cortical region adjacent to the hippocampus.[18] This gy-
rus conceals the hippocampus. The parahippocampal 
gyrus also includes the perirhinal cortex which plays an 
important role in the visual recognition of complex ob-
jects. There is also substantial evidence that it makes a 
contribution to memory, which can be distinguished 
from the contribution of the hippocampus. It is appar-
ent that complete amnesia occurs only when both the 

hippocampus and the parahippocampus are dam-
aged.[18] 

Circuitry 

The perforant path is the main output pathway of the 
entorhinal cortex (EC). The flow of information in the 
hippocamous is largely unidirectional. Axons from the 
pyramidal cells (in EC layer II) perforate the subiculum 
to project mainly to the granular layer in the dentate gy-
rus (first synaptic connection). Some axons project to 
CA3 and a lesser number project to CA1. The dentate 
granule cell axons, called mossy fibers, pass on the in-
formation, to the dendrites of CA3 pyramidal cells (sec-
ond synaptic connection). From there, CA3 axons called 
Schaffer collaterals leave the deep part of the cell body 
and loop up to the apical dendrites and then extend to 
CA1. Axons from CA1 then project back to the entrorhi-
nal coretex (third synaptic connection) completing the 
trisynaptic loop or circuit.[19] 

Basket cells in CA3 receive excitatory input from the py-
ramidal cells and then give an inhibitory feedback to the 
pyramidal cells. This recurrent inhibition is a simple feed-
back circuit that can dampen excitatory responses in 
the hippocampus. The pyramidal cells gives a recurrent 
excitation which is an important mechanism found in 
some memory processing microcircuits.[20] 

Several other connections play important roles in hip-
pocampal function.[15] Beyond the output to the EC, ad-
ditional output pathways go to other cortical areas in-
cluding the prefrontal cortex. A major output goes via 
the fornix to the lateral septal area and to the mammil-
lary body of the hypothalamus (which the fornix inter-
connects with the hippocampus).[14] The hippocampus 
receives modulatory input from the serotonin, norepi-
nephrine, and dopamine systems, and from the nucleus 
reuniens of the thalamus to field CA1. A very important 
projection comes from the medial septal nucleus, which 
sends cholinergic, and gamma amino butyric acid 

Figure 3 | Coronal section of the brain of a macaque monkey, 
showing hippocampus (circled). brainmaps.org, CC-BY-SA 3.0 

Figure 4 | Basic circuit of the hippocampus, DG: dentate gy-
rus. Sub: subiculum. EC: entorhinal cortex. Santiago Ramón y 
Cajal, modified by William Skaggs, public domain 
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(GABA) stimulating fibers (GABAergic fibers) to all 
parts of the hippocampus. The inputs from the medial 
septal nucleus play a key role in controlling the physio-
logical state of the hippocampus; destruction of this nu-
cleus abolishes the hippocampal theta rhythm and se-
verely impairs certain types of memory.[21]  

Functions 

Hippocampal regions 

Areas of the hippocampus are shown to be functionally 
and anatomically distinct. The dorsal hippocampus 
(DH), ventral hippocampus (VH) and intermediate hip-
pocampus serve different functions, project with differ-
ing pathways, and have varying degrees of place 
cells.[23] The dorsal hippocampus serves for spatial 
memory, verbal memory, and learning of conceptual in-
formation. Using the radial arm maze, lesions in the DH 
were shown to cause spatial memory impairment while 
VH lesions did not. Its projecting pathways include the 
medial septal nucleus and supramammillary nucleus.[24] 
The dorsal hippocampus also has more place cells than 
both the ventral and intermediate hippocampal re-
gions.[25] 

The intermediate hippocampus has overlapping char-
acteristics with both the ventral and dorsal hippocam-
pus.[23] Using anterograde tracing methods, Cenquizca 
and Swanson (2007) located the moderate projections 
to two primary olfactory cortical areas and prelimbic ar-
eas of the medial prefrontal cortex. This region has the 
smallest number of place cells. The ventral hippocam-

pus functions in fear conditioning and affective pro-
cesses.[26] Anagnostaras et al. (2002) showed that alter-
ations to the ventral hippocampus reduced the amount 
of information sent to the amygdala by the dorsal and 
ventral hippocampus, consequently altering fear condi-
tioning in rats.[27] 

Historically, the earliest widely held hypothesis was 
that the hippocampus is involved in olfaction.[28] This 
idea was cast into doubt by a series of anatomical stud-
ies that did not find any direct projections to the hippo-
campus from the olfactory bulb.[29] However, later work 
did confirm that the olfactory bulb does project into the 
ventral part of the lateral entorhinal cortex, and field 
CA1 in the ventral hippocampus sends axons to the 
main olfactory bulb,[30] the anterior olfactory nucleus, 
and to the primary olfactory cortex. There continues to 
be some interest in hippocampal olfactory responses, in 
particular the role of the hippocampus in memory for 
odors, but few specialists today believe that olfaction is 
its primary function.[31][32] 

Theories of hippocampal functions 

Over the years, three main ideas of hippocampal func-
tion have dominated the literature: inhibition response, 
memory, and space. The behavioral inhibition theory 
(caricatured by John O'Keefe and Lynn Nadel as "slam 
on the brakes!")[33] was very popular up to the 1960s. It 
derived much of its justification from two observations: 
first, that animals with hippocampal damage tend to be 
hyperactive; second, that animals with hippocampal 
damage often have difficulty learning to inhibit re-
sponses that they have previously been taught, espe-
cially if the response requires remaining quiet as in a 
passive avoidance test. Jeffrey Gray developed this line 
of thought into a full-fledged theory of the role of the 
hippocampus in anxiety.[34] The inhibition theory is cur-
rently the least popular of the three.[35] 

The second major line of thought relates the hippocam-
pus to memory. Although it had historical precursors, 
this idea derived its main impetus from a famous report 
by William Beecher Scoville and Brenda Milner[36] de-
scribing the results of surgical destruction of the hippo-
campi (in an attempt to relieve epileptic seizures), in 
Henry Molaison,[37] known until his death in 2008 as "Pa-
tient H.M." The unexpected outcome of the surgery was 
severe anterograde and partial retrograde amnesia; 
Molaison was unable to form new episodic memories 
after his surgery and could not remember any events 
that occurred just before his surgery, but he did retain 
memories of events that occurred many years earlier 
extending back into his childhood. This case attracted 
such widespread professional interest that Molaison 

Figure 5 | Hippocampal location and regions.[22] 
John Kiernan CC-BY-SA 4.0 
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became the most intensively studied subject in medical 
history.[38] In the ensuing years, other patients with sim-
ilar levels of hippocampal damage and amnesia (caused 
by accident or disease) have also been studied, and 
thousands of experiments have studied the physiology 
of activity-driven changes in synaptic connections in 
the hippocampus. There is now universal agreement 
that the hippocampi play some sort of important role in 
memory; however, the precise nature of this role re-
mains widely debated.[39][40] 

The third important theory of hippocampal function re-
lates the hippocampus to space. The spatial theory was 
originally championed by O'Keefe and Nadel, who were 
influenced by E.C. Tolman's theories about "cognitive 
maps" in humans and animals. O'Keefe and his student 
Dostrovsky in 1971 discovered neurons in the rat hippo-
campus that appeared to them to show activity related 
to the rat's location within its environment.[41] Despite 
skepticism from other investigators, O'Keefe and his 
co-workers, especially Lynn Nadel, continued to inves-
tigate this question, in a line of work that eventually led 
to their very influential 1978 book The Hippocampus as 
a Cognitive Map.[42] There is now almost universal 
agreement that hippocampal function plays an im-
portant role in spatial coding, but the details are widely 
debated.[43] 

Later research has focused on trying to bridge the dis-
connect between the two main views of hippocampal 
function as being split between memory and spatial 
cognition. In some studies these areas have been ex-
panded to the point of near convergence. In an attempt 
to reconcile the two disparate views it is suggested that 
a broader view of the hippocampal function is taken and 
seen to have a role that encompasses both the organi-
sation of experience (mental mapping), (as per 
Tolman's original concept in 1948) and the directional 
behaviour seen as being involved in all areas of cogni-
tion. So that the function of the hippocampus can be 
viewed as a broader system that incorporates both the 
memory and the spatial perspectives in its role that in-
volves the use of a wide scope of cognitive maps.[44] This 
relates to the purposive behaviorism born of Tolman's 
original goal of identifying the complex cognitive mech-
anisms and purposes that guided behaviour.[45] 

It has also been proposed that the spiking activity of 
hippocampal neurons is associated spatially, and it was 
suggested that the mechanisms of memory and plan-
ning both evolved from mechanisms of navigation and 
that their neuronal algorithms were basically the 
same.[46] 

Many studies have made use of neuroimaging tech-
niques such as functional magnetic resonance imaging 

(fMRI) and a functional role in approach-avoidance con-
flict has been noted. The anterior hippocampus is seen 
to be involved in decision-making under approach-
avoidance conflict processing. It is suggested that the 
memory, spatial cognition, and conflict processing 
functions may be seen as working together and not mu-
tually exclusive.[47] 

Role in memory 

Psychologists and neuroscientists generally agree that 
the hippocampus plays an important role in the for-
mation of new memories about experienced events 
(episodic or autobiographical memory).[40][48] Part of 
this function is hippocampal involvement in the detec-
tion of new events, places and stimuli.[49] Some re-
searchers regard the hippocampus as part of a larger 
medial temporal lobe memory system responsible for 
general declarative memory (memories that can be ex-
plicitly verbalized—these would include, for example, 
memory for facts in addition to episodic memory).[39] 

Due to bilateral symmetry the brain has a hippocampus 
in each cerebral hemisphere. If damage to the hippo-
campus occurs in only one hemisphere, leaving the 
structure intact in the other hemisphere, the brain can 
retain near-normal memory functioning.[50] Severe 
damage to the hippocampi in both hemispheres results 
in profound difficulties in forming new memories 
(anterograde amnesia) and often also affects memories 
formed before the damage occurred (retrograde amne-
sia). Although the retrograde effect normally extends 
many years back before the brain damage, in some 
cases older memories remain. This retention of older 
memories leads to the idea that consolidation over time 
involves the transfer of memories out of the hippocam-
pus to other parts of the brain.[48] Experiments using in-
trahippocampal transplantation of hippocampal cells in 
primates with neurotoxic lesions of the hippocampus 
have shown that the hippocampus is required for the 
formation and recall, but not the storage, of memo-
ries.[51] 

Damage to the hippocampus does not affect some 
types of memory, such as the ability to learn new skills 
(playing a musical instrument or solving certain types of 
puzzles, for example). This fact suggests that such abil-
ities depend on different types of memory (procedural 
memory) and different brain regions. Furthermore, am-
nesic patients frequently show "implicit" memory for 
experiences even in the absence of conscious 
knowledge. For example, patients asked to guess which 
of two faces they have seen most recently may give the 
correct answer most of the time in spite of stating that 
they have never seen either of the faces before. Some 
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researchers distinguish between conscious recollection, 
which depends on the hippocampus, and familiarity, 
which depends on portions of the medial temporal 
lobe.[52] 

Role in spatial memory and navigation 

Studies on freely moving rats and mice have shown 
many hippocampal neurons to act as place cells that 
cluster in place fields, and these fire bursts of action po-
tentials when the animal passes through a particular lo-
cation. This place-related neural activity in the hippo-
campus has also been reported in monkeys that were 
moved around a room whilst in a restraint chair.[53] 
However, the place cells may have fired in relation to 
where the monkey was looking rather that to its actual 
location in the room.[54] Over many years, many studies 
have been carried out on place-responses in rodents, 
that have given a large amount of information.[43] Place 
cell responses are shown by pyramidal cells in the hip-
pocampus and by granule cells in the dentate gyrus. 
Other cells in smaller proportion are inhibitory inter-
neurons and these often show place-related variations 
in their firing-rate which are much weaker. There is little 
if any spatial topography in the representation; in gen-
eral, cells lying next to each other in the hippocampus 
have uncorrelated spatial firing patterns. Place cells are 
typically almost silent when a rat is moving around out-
side the place field but reach sustained rates as high as 
40 Hz, when the rat is near the center. Neural activity 
sampled from 30 to 40 randomly chosen place cells car-
ries enough information to allow a rat's location to be 
reconstructed with high confidence. The size of place 
fields varies in a gradient along the length of the hippo-
campus, with cells at the dorsal end showing the small-
est fields, cells near the center showing larger fields, 
and cells at the ventral tip showing fields that cover the 
entire environment.[43] In some cases, the firing rate of 
hippocampal cells depends not only on place but also on 
the direction a rat is moving, the destination toward 
which it is traveling, or other task-related variables.[55] 

In humans, cells with location-specific firing patterns 
have been reported during a study of patients with 
drug-resistant epilepsy. They were undergoing an inva-
sive procedure to localize the source of their seizures, 
with a view to surgical resection. The patients had diag-
nostic electrodes implanted in their hippocampus and 
then used a computer to move around in a virtual reality 
town.[56] Similar brain imaging studies in navigation 
have shown the hippocampus to be active. A study was 
carried out on taxi drivers. London’s black cab drivers 
need to learn the locations of a large number of places 
and the fastest routes between them in order to pass a 
strict test known as The Knowledge in order to gain a 

license to operate. A study showed that the posterior 
part of the hippocampus is larger in these drivers than 
in the general public, and that a positive correlation ex-
ists between the length of time served as a driver and 
the increase in the volume of this part. It was also found 
the total volume of the hippocampus was unchanged, 
as the increase seen in the posterior part was made at 
the expense of the anterior part, which showed a rela-
tive decrease in size. There have been no reported ad-
verse effects from this disparity in hippocampal propor-
tions.[57] 

There are several navigational cells in the brain that are 
either in the hippocampus itself or are strongly con-
nected to it, such as the speed cells present in the me-
dial enterorhinal cortex. Together these cells form a 
network that serves as spatial memory. The first of such 
cells discovered in the 1970s were the place cells, which 
led to the idea of the hippocampus acting to give a neu-
ral representation of the environment in a cognitive 
map.[58] When the hippocampus is dysfunctional, orien-
tation is affected; people may have difficulty in remem-
bering how they arrived at a location and how to pro-
ceed further. Getting lost is a common symptom of am-
nesia.[59] Studies with animals have shown that an intact 
hippocampus is required for initial learning and long-
term retention of some spatial memory tasks, in partic-
ular ones that require finding the way to a hidden 
goal.[60][61][62][63] Other cells have been discovered since 
the finding of the place cells in the rodent brain that are 
either in the hippocampus or the entorhinal cortex. 
These have been assigned as head direction cells, grid 
cells and boundary cells.[43][64] Speed cells are thought 
to provide input to the hippocampal grid cells. 

Figure 6 | Spatial firing patterns of 8 place cells recorded from 
the CA1 layer of a rat. The rat ran back and forth along an ele-
vated track, stopping at each end to eat a small food reward. 
Dots indicate positions where action potentials were rec-
orded, with color indicating which neuron emitted that action 
potential. Stuart Layton, CC-BY-SA 3.0 
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Role in approach-avoidance conflict pro-
cessing 

Approach-avoidance conflict happens when a situation 
is presented that can either be rewarding or punishing, 
and the ensuing decision making has been associated 
with anxiety.[65] fMRI findings from studies in approach-
avoidance decision-making found evidence for a func-
tional role that is not explained by either long-term 
memory or spatial cognition. Overall findings showed 
that the anterior hippocampus is sensitive to conflict, 
and that it may be part of a larger cortical and subcorti-
cal network seen to be important in decision making in 
uncertain conditions.[65] 

A review makes reference to a number of studies that 
show the involvement of the hippocampus in conflict 
tasks. The authors suggest that a challenge is to under-
stand how conflict processing relates to the functions of 
spatial navigation and memory and how all of these 
functions need not be mutually exclusive.[66] 

Physiology 

The hippocampus shows two major "modes" of activity, 
each associated with a distinct pattern of neural popu-
lation activity and waves of electrical activity as meas-
ured by an electroencephalogram (EEG). These modes 
are named after the EEG patterns associated with 
them: theta and large irregular activity (LIA). The main 
characteristics described below are for the rat, which is 
the animal most extensively studied.[67] 

The theta mode appears during states of active, alert 
behavior (especially locomotion), and also during REM 
(dreaming) sleep.[68] In the theta mode, the EEG is dom-
inated by large regular waves with a frequency range of 
6 to 9 Hz, and the main groups of hippocampal neurons 
(pyramidal cells and granule cells) show sparse popula-
tion activity, which means that in any short time inter-
val, the great majority of cells are silent, while the small 
remaining fraction fire at relatively high rates, up to 50 
spikes in one second for the most active of them. An ac-
tive cell typically stays active for half a second to a few 
seconds. As the rat behaves, the active cells fall silent 
and new cells become active, but the overall percentage 
of active cells remains more or less constant. In many 
situations, cell activity is determined largely by the spa-
tial location of the animal, but other behavioral varia-
bles also clearly influence it. 

The LIA mode appears during slow-wave (non-dream-
ing) sleep, and also during states of waking immobility 
such as resting or eating.[68] In the LIA mode, the EEG is 
dominated by sharp waves that are randomly timed 

large deflections of the EEG signal lasting for 25–50 mil-
liseconds. Sharp waves are frequently generated in 
sets, with sets containing up to 5 or more individual 
sharp waves and lasting up to 500 ms. The spiking activ-
ity of neurons within the hippocampus is highly corre-
lated with sharp wave activity. Most neurons decrease 
their firing rate between sharp waves; however, during 
a sharp wave, there is a dramatic increase of firing rate 
in up to 10% of the hippocampal population 

These two hippocampal activity modes can be seen in 
primates as well as rats, with the exception that it has 
been difficult to see robust theta rhythmicity in the pri-
mate hippocampus. There are, however, qualitatively 
similar sharp waves and similar state-dependent 
changes in neural population activity.[69] 

Theta rhythm 

Because of its densely packed neural layers, the hippo-
campus generates some of the largest EEG signals as 
theta waves of any brain structure, which generate the 
hippocampal theta rhythm.[70] In some situations the 
EEG is dominated by regular waves at 3 to 10 Hz, often 
continuing for many seconds. These reflect subthresh-
old membrane potentials and strongly modulate the 

Figure 7 | Examples of rat hippocampal EEG and CA1 neural 
activity in the theta (awake/behaving) and LIA (slow-wave 
sleep) modes. Each plot shows 20 seconds of data, with a hip-
pocampal EEG trace at the top, spike rasters from 40 simulta-
neously recorded CA1 pyramidal cells in the middle (each ras-
ter line represents a different cell), and a plot of running speed 
at the bottom. The top plot represents a time period during 
which the rat was actively searching for scattered food pellets. 
For the bottom plot the rat was asleep.  
William Skaggs, public domain 
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spiking of hippocampal neurons and synchronise across 
the hippocampus in a travelling wave pattern.[71] The 
trisynaptic circuit is a relay of neurotransmission in the 
hippocampus that interacts with many brain regions. 
From rodent studies it has been proposed that the tri-
synaptic circuit generates the hippocampal theta 
rhythm.[72] 

Theta rhythmicity is very obvious in rabbits and rodents 
and also clearly present in cats and dogs. Whether theta 
can be seen in primates is not yet clear.[73] In rats (the 
animals that have been the most extensively studied), 
theta is seen mainly in two conditions: first, when an an-
imal is walking or in some other way actively interacting 
with its surroundings; second, during REM sleep.[74] The 
function of theta has not yet been convincingly ex-
plained although numerous theories have been pro-
posed.[67] The most popular hypothesis has been to re-
late it to learning and memory. An example would be 
the phase with which theta rhythms, at the time of 
stimulation of a neuron, shape the effect of that stimu-
lation upon its synapses. What is meant here is that 
theta rhythms may affect those aspects of learning and 
memory that are dependent upon synaptic plasticity.[75] 
It is well established that lesions of the medial septum—
the central node of the theta system—cause severe dis-
ruptions of memory. However, the medial septum is 
more than just the controller of theta; it is also the main 
source of cholinergic projections to the hippocam-
pus.[15] It has not been established that septal lesions 
exert their effects specifically by eliminating the theta 
rhythm.[76] 

Sharp waves 

During sleep or during resting when an animal is not en-
gaged with its surroundings, the hippocampal EEG 
shows a pattern of irregular slow waves, somewhat 
larger in amplitude than theta waves. This pattern is oc-
casionally interrupted by large surges called sharp 
waves.[77] These events are associated with bursts of 
spike activity lasting 50 to 100 milliseconds in pyramidal 
cells of CA3 and CA1. They are also associated with 
short-lived high-frequency EEG oscillations called "rip-
ples", with frequencies in the range 150 to 200 Hz in 
rats, and together they are known as sharp waves and 
ripples. Sharp waves are most frequent during sleep 

when they occur at an average rate of around 1 per sec-
ond (in rats) but in a very irregular temporal pattern. 
Sharp waves are less frequent during inactive waking 
states and are usually smaller. Sharp waves have also 
been observed in humans and monkeys. In macaques, 
sharp waves are robust but do not occur as frequently 
as in rats.[69] 

One of the most interesting aspects of sharp waves is 
that they appear to be associated with memory. Wilson 
and McNaughton 1994,[78] and numerous later studies, 
reported that when hippocampal place cells have over-
lapping spatial firing fields (and therefore often fire in 
near-simultaneity), they tend to show correlated activ-
ity during sleep following the behavioral session. This 
enhancement of correlation, commonly known as reac-
tivation, has been found to occur mainly during sharp 
waves.[79] It has been proposed that sharp waves are, in 
fact, reactivations of neural activity patterns that were 
memorized during behavior, driven by strengthening of 
synaptic connections within the hippocampus.[80] This 
idea forms a key component of the "two-stage 
memory" theory, advocated by Buzsáki and others, 
which proposes that memories are stored within the 
hippocampus during behavior and then later trans-
ferred to the neocortex during sleep. Sharp waves in 
Hebbian theory are seen as persistently repeated stim-
ulations by presynaptic cells, of postsynaptic cells that 
are suggested to drive synaptic changes in the cortical 
targets of hippocampal output pathways.[81] Suppres-
sion of sharp waves and ripples in sleep or during immo-
bility can interfere with memories expressed at the level 
of the behavior,[82][83] nonetheless, the newly formed 
CA1 place cell code can re-emerge even after a sleep 
with abolished sharp-waves and ripples in spatially non-
demanding tasks.[84] 

Long-term potentiation 

Since at least the time of Ramon y Cajal (1852-1934), 
psychologists have speculated that the brain stores 
memory by altering the strength of connections be-
tween neurons that are simultaneously active.[85] This 
idea was formalized by Donald Hebb in 1949,[86] but for 
many years remained unexplained. In 1973, Tim Bliss 
and Terje Lømo described a phenomenon in the rabbit 
hippocampus that appeared to meet Hebb's specifica-
tions: a change in synaptic responsiveness induced by 
brief strong activation and lasting for hours or days or 
longer.[87] This phenomenon was soon referred to as 
long-term potentiation, abbreviated LTP. As a candi-
date mechanism for long-term memory, LTP has since 
been studied intensively, and a great deal has been 
learned about it. However, the complexity and variety 
of the intracellular signalling cascades that can trigger 

Figure 8 | Example of a one-second EEG theta wave. 
Hugo Gamboa, CC-BY-SA 3.0 
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LTP is acknowledged as preventing a more complete 
understanding.[88] 

The hippocampus is a particularly favorable site for 
studying LTP because of its densely packed and sharply 
defined layers of neurons, but similar types of activity-
dependent synaptic change have also been observed in 
many other brain areas.[89] The best-studied form of 
LTP has been seen in CA1 of the hippocampus and oc-
curs at synapses that terminate on dendritic spines and 
use the neurotransmitter glutamate.[90] The synaptic 
changes depend on a special type of glutamate recep-
tor, the N-methyl-D-aspartate (NMDA) receptor, a cell 
surface receptor which has the special property of al-
lowing calcium to enter the postsynaptic spine only 
when presynaptic activation and postsynaptic depolar-
ization occur at the same time.[91] Drugs that interfere 
with NMDA receptors block LTP and have major effects 
on some types of memory, especially spatial memory. 
Genetically modified mice that are modified to disable 
the LTP mechanism, also generally show severe 
memory deficits.[91] 

Pathology 

Aging 

Age-related conditions such as Alzheimer's disease and 
other forms of dementia (for which hippocampal dis-
ruption is one of the earliest signs[92]) have a severe im-
pact on many types of cognition, but even normal aging 
is associated with a gradual decline in some types of 
memory, including episodic memory and working 
memory (or short-term memory). Because the hippo-
campus is thought to play a central role in memory, 
there has been considerable interest in the possibility 
that age-related declines could be caused by hippocam-
pal deterioration.[93] Some early studies reported sub-
stantial loss of neurons in the hippocampus of elderly 
people, but later studies using more precise techniques 
found only minimal differences.[93] Similarly, some MRI 
studies have reported shrinkage of the hippocampus in 
elderly people, but other studies have failed to repro-
duce this finding. There is, however, a reliable relation-
ship between the size of the hippocampus and memory 
performance: where there is age-related shrinkage, 
memory performance will be impaired.[94] There are 
also reports that memory tasks tend to produce less 
hippocampal activation in the elderly than in the 
young.[94] Furthermore, a randomized control trial pub-
lished in 2011 found that aerobic exercise could in-
crease the size of the hippocampus in adults aged 55 to 
80 and also improve spatial memory.[95] 

Effects of cortisol 

The hippocampus contains high levels of glucocorticoid 
receptors, which make it more vulnerable to long-term 
stress than most other brain areas.[96] There is evidence 
that humans having experienced severe, long-lasting 
traumatic stress show atrophy of the hippocampus 
more than of other parts of the brain.[97] These effects 
show up in post-traumatic stress disorder,[98] and they 
may contribute to the hippocampal atrophy reported in 
schizophrenia[99][100] and severe depression.[101] A re-
cent study has also revealed atrophy as a result of de-
pression, but this can be stopped with anti-depressants 
even if they are not effective in relieving other symp-
toms.[102] 

Chronic stress resulting in elevated levels of glucocorti-
coids, notably of cortisol, is seen to be a cause of neu-
ronal atrophy in the hippocampus.This atrophy results 
in a smaller hippocampal volume which is also seen in 
Cushing’s syndrome. The higher levels of cortisol in 
Cushing’s syndrome is usually the result of medications 
taken for other conditions.[103][104] Neuronal loss also oc-
curs as a result of impaired neurogenesis. Another fac-
tor that contributes to a smaller hippocampal volume is 
that of dendritic retraction where dendrites are short-
ened in length and reduced in number, in response to 
increased glucocorticoids. This dendritic retraction is 
reversible.[104] After treatment with medication to re-
duce cortisol in Cushing’s syndrome, the hippocampal 
volume is seen to be restored by as much as 10%.[103] 
This change is seen to be due to the reforming of the 
dendrites. [104] This dendritic restoration can also hap-
pen when stress is removed. There is, however, evi-
dence derived mainly from studies using rats that stress 
occurring shortly after birth can affect hippocampal 
function in ways that persist throughout life.[105] 

Sex-specific responses to stress have also been demon-
strated in the rat, to have an effect on the hippocampus. 
Chronic stress in the male rat showed dendritic retrac-
tion and cell loss in the CA3 region but this was not 
shown in the female. This was thought to be due to neu-
roprotective ovarian hormones.[106][107] 

Epilepsy 

The hippocampus is one of the few brain regions where 
new neurons are generated. This process of neurogen-
esis is confined to the dentate gyrus.[109] The production 
of new neurons can be positively affected by exercise or 
negatively affected by epileptic seizures.[109] Seizures in 
temporal lobe epilepsy can affect the normal develop-
ment of new neurons and can cause tissue damage. 
Hippocampal sclerosis is the most common type of such 
tissue damage.[110] It is not yet clear, however, whether 
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the epilepsy is usually caused by hippocampal abnor-
malities or whether the hippocampus is damaged by cu-
mulative effects of seizures.[111] However, in experi-
mental settings where repetitive seizures are artificially 
induced in animals, hippocampal damage is a frequent 
result. This may be a consequence of the concentration 
of excitable glutamate receptors in the hippocampus. 
Hyperexcitability can lead to cytotoxicity and cell 
death.[104] It may also have something to do with the 
hippocampus being a site where new neurons continue 
to be created throughout life,[109] and to abnormalities 
in this process.[104] 

Schizophrenia 

The causes of schizophrenia are not well understood, 
but numerous abnormalities of brain structure have 
been reported. The most thoroughly investigated alter-
ations involve the cerebral cortex, but effects on the 
hippocampus have also been described. Many reports 
have found reductions in the size of the hippocampus in 
schizophrenic subjects.[112] The left hippocampus 
seems to be affected more than the right.[112] The 
changes noted have largely been accepted to be the re-
sult of abnormal development. It is unclear whether 
hippocampal alterations play any role in causing the 
psychotic symptoms that are the most important fea-
ture of schizophrenia. It has been suggested that on the 
basis of experimental work using animals, hippocampal 
dysfunction might produce an alteration of dopamine 
release in the basal ganglia, thereby indirectly affecting 
the integration of information in the prefrontal cor-
tex.[113] It has also been suggested that hippocampal 
dysfunction might account for the disturbances in long-
term memory frequently observed.[114] 

MRI studies have found a smaller brain volume and 
larger ventricles in people with schizophrenia. Re-
searchers do not know if the shrinkage is from the schiz-
ophrenia or from the medication.[115][116] The hippocam-
pus and thalamus have been shown to be reduced in 

volume; and the volume of the globus pallidus is in-
creased. Cortical patterns are altered, and a reduction 
in the volume and thickness of the cortex particularly in 
the frontal and temporal lobes has been noted. It has 
further been proposed that many of the changes seen 
are present at the start of the disorder which gives 
weight to the theory that there is abnormal neurodevel-
opment.[117] 

The hippocampus has been seen as central to the pa-
thology of schizophrenia, both in the neural and physi-
ological effects.[112] It has been generally accepted that 
there is an abnormal synaptic connectivity underlying 
schizophrenia. Several lines of evidence implicate 
changes in the synaptic organization and connectivity, 
in and from the hippocampus[112] Many studies have 
found dysfunction in the synaptic circuitry within the 
hippocampus and its activity on the prefrontal cortex. 
The glutamergic pathways have been seen to be largely 
affected. The subfield CA1 is seen to be the least in-
volved of the other subfields,[112][118] and CA4 and the 
subiculum have been reported elsewhere as being the 
most implicated areas.[118] The review concluded that 
the pathology could be due to genetics, faulty neurode-
velopment or abnormal neural plasticity. It was further 
concluded that schizophrenia is not due to any known 
neurodegenerative disorder.[112] 

Transient global amnesia 

Transient global amnesia is a dramatic, sudden, tempo-
rary, near-total loss of short-term memory. Various 
causes have been hypothesized including ischemia, ep-
ilepsy, migraine[119] and disturbance of cerebral venous 
blood flow,[120] leading to ischemia of structures such as 
the hippocampus that are involved in memory.[121] 

There has been no scientific proof of any cause. How-
ever diffusion weighted MRI studies taken from 12–24 
hours following an episode has shown there to be small 
dot-like lesions in the hippocampus. These findings 
have suggested a possible implication of CA1 neurons 
made vulnerable by metabolic stress.[119] 

Figure 9 | An EEG showing epilepsy right-hippocampal sei-
zure onset.[108] Francisco Velasco et al, CC-BY-SA 4.0 

Figure 10 | An EEG showing epilepsy left-hippocampal seizure 
onset.[108] Francisco Velasco et al, CC-BY-SA 4.0 
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Other animals 

The hippocampus has a generally similar appearance 
across the range of mammals, from monotremes such 
as the echidna to primates such as humans.[122] The hip-
pocampal-size-to-body-size ratio broadly increases, 
being about twice as large for primates as for the 
echidna. It does not, however, increase at anywhere 
close to the rate of the neocortex-to-body-size ratio. 
Therefore, the hippocampus takes up a much larger 
fraction of the cortical mantle in rodents than in pri-
mates. In adult humans the volume of the hippocampus 
on each side of the brain is about 3.0 to 3.5 cm3 as com-
pared to 320 to 420 cm3 for the volume of the neocor-
tex.[123] 

There is also a general relationship between the size of 
the hippocampus and spatial memory. When compari-
sons are made between similar species, those that have 
a greater capacity for spatial memory tend to have 
larger hippocampal volumes.[124] This relationship also 
extends to sex differences; in species where males and 
females show strong differences in spatial memory abil-
ity they also tend to show corresponding differences in 
hippocampal volume.[125] 

Non-mammalian species do not have a brain structure 
that looks like the mammalian hippocampus, but they 
have one that is considered homologous to it. The hip-
pocampus, as pointed out above, is in essence part of 
the allocortex. Only mammals have a fully developed 
cortex, but the structure it evolved from, called the pal-
lium, is present in all vertebrates, even the most primi-
tive ones such as the lamprey or hagfish.[126] The pal-
lium is usually divided into three zones: medial, lateral 
and dorsal. The medial pallium forms the precursor of 
the hippocampus. It does not resemble the hippocam-
pus visually because the layers are not warped into an S 
shape or enfolded by the dentate gyrus, but the homol-
ogy is indicated by strong chemical and functional affin-
ities. There is now evidence that these hippocampal-
like structures are involved in spatial cognition in birds, 
reptiles, and fish.[127] 

In birds, the correspondence is sufficiently well estab-
lished that most anatomists refer to the medial pallial 
zone as the "avian hippocampus".[128] Numerous spe-
cies of birds have strong spatial skills, in particular those 
that cache food. There is evidence that food-caching 
birds have a larger hippocampus than other types of 
birds and that damage to the hippocampus causes im-
pairments in spatial memory.[129] 

The story for fish is more complex. In teleost fish (which 
make up the great majority of existing species), the 
forebrain is distorted in comparison to other types of 

vertebrates: Most neuroanatomists believe that the tel-
eost forebrain is in essence everted, like a sock turned 
inside-out, so that structures that lie in the interior, next 
to the ventricles, for most vertebrates, are found on the 
outside in teleost fish, and vice versa.[130] One of the 
consequences of this is that the medial pallium ("hippo-
campal" zone) of a typical vertebrate is thought to cor-
respond to the lateral pallium of a typical fish. Several 
types of fish (particularly goldfish) have been shown ex-
perimentally to have strong spatial memory abilities, 
even forming "cognitive maps" of the areas they in-
habit.[124] There is evidence that damage to the lateral 
pallium impairs spatial memory.[131][132] 

It is not yet known whether the medial pallium plays a 
similar role in even more primitive vertebrates, such as 
sharks and rays, or even lampreys and hagfish. Some 
types of insects, and molluscs such as the octopus, also 
have strong spatial learning and navigation abilities, but 
these appear to work differently from the mammalian 
spatial system, so there is as yet no good reason to think 
that they have a common evolutionary origin; nor is 
there sufficient similarity in brain structure to enable 
anything resembling a "hippocampus" to be identified 
in these species. Some have proposed, however, that 
the insect's mushroom bodies may have a function sim-
ilar to that of the hippocampus.[133] 
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