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BOUNDARY FUNCTIONS
By Theodore John Kaciymski ’

Let H denote the set of all points in the Buclidean plane
having positive y-ccordinate, and let X denote the x-axis. If
p is a point of X, then by an are at p we mean a simple are
Y, having one endpoint at p, such thet Y -$p} C H. Let f
be a funetion mappirg H 1into the Riemann sphere. BEy a

boundary function for f we mean a function. @ defined on a

set E C X such that for each p € E there exists an are Y
at p for which

gl.i_l"p £(z) = ¢ (p).

gEY

The set of gurvilinear gconvergenge of f is the largest set on
which a boundary funetion for f can be defined; in other words,
it is the set of all points p € X such that there exists an
arc at p along which f approaches a 1limit. A theorem of J. E.
MoMillan states that if f 4s a continuous funetlon mapping H
into the Riemann sphere, then the set of curvilinear convergence
of £ 1is of type F(;g « In the first of the two chapters of
this dissertation we give a more direct proof of this result than
MeMillan's, and we prove, conversely, that 4f A 4is a set of
type Fgo in X, then there exists a bounded continuous

complex-valued funetion in H having A as its set of curvi-



1insar convergence. Next, we prove that a boundary funetion for
a contimious funetion ca,n always be made into a function of
Baire class 1 by changing 1ts values on a ecountable set of
points, Conversely, we show that 4f @ 1is a function mapping a
sst E C X into the Rlemann sphere, and 4f (© can be made
into a function of Baire class 1 by changing its values on a
countsble set, then there exists a contirmuous function in H
having © as a boundary funotion.. (This is a slight general-
sgation of & theorem of Bagemihl and Piranian.) In the second
chapter we prove thst & doundsry funotion for a function of
Baire class £ =~ 1 4n H is of Baire class at most Sel. It
follows from this that a boundary funection for a Borel-measur-
able funotion is alvays Borel-measurable, but we show that a
boundary funotion for a Lebssgue-measurable function need not
be Lebesgue-measurable, The dissertation oongludes with a list

of problems remaining to be solved,
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INTRODUCTION
1. Preliminary Remarks

Let H denote the upper half-plane, and let X denote its
frontie}', the x-axis. If x€&€X, then by an arc at x we mean a simple
arc y-with one endpoint at x such that y - {x} EH‘. Suppose that £
is a function mapping H into some metric space Y. If E is any subset

of X, we will say that a function ¢:E + Y is a boundary function for

f if, and only if, for each XGE there exists an arc Y2%1 X such that

lim £(z) = @

z + X

zey
The study of boundary functions in this degree of generality was
initiated by Bagemihl and Piranian {2]. A function defined in H may
have more than one boundary function defined on a given set E < X,
but it follows from a famous theorem of Bagemihl [1] that any two

such boundary functions differ on at most a countable set of points,

If f is defined in H, then the set of curvilinear convergence

of f is the set of all points x€&€X such that there exists some arc

at x along which f approaches a limit. Evidently, this is the

largest set on which a boundary function for f can be defined.

J. E. McMillan [10] discovered that the set of curvilinear convergence
of a continuous function is always of type F s and in this paper we

show that every set of type FmS in X is the set of curvilinear



convergence of some continuous functior. Neit, we show that if ¢ is
a function defined on a subset E of X, then ¢ is a boundary function
for some continuous function if and only if ¢ can be made into a
function of the first Baire class by changing its values on at most
a countable set of points. (This solves a problem of Bagemihl and
Piranian [2, Problem 1].) We then consider functions that are not
assumed to be continuous, and we prove that a boundary function for
a function of Baire class £ > 1 is of Baire class at most £ + 1 (thus
proving another conjecture of Bagemihl and Piranian [2]). It follows
from this that a boundary function for a Borel-measurable ifunction

is always Borel-measurabfe, and in the last section we show that a
boundary function for a Lebesgue-measurablé function need not be

Lebesgue-measurable.

Most of the results appearing here have already been publfshed

([8] and [9]). At the time I published these papers I did not expect

to have to make use of this material for a dissertation.
2. Notation

R will denote the field of real numbers.

R® will denote n-dimensional Euclidean space.

Points in R™ will be written in the form (xl,..., XA) rather
than (Xl,..., xn) (to avoid confusion with open intervals of real
numbers in the case n = 2).

If ve Rn, then |v| denotes the length of the vector v.

s% denotes {vER: lv| = 1}. S? will be referred to as the

Riemann sphere.




.Let
H = {{x,y)€R% : y >0}
H = {<x,y)€R* : 3>y >0}
n n
X = {{x,0 : x€R} .

<
]

o '{<n%> : X€R} .

We consider X as being identical with R. Thus, for example,
{x,0) < {x',0) means x < x', and for p, q € X, the notations
[p,ql, [p,q), etc. refer to the obvious intervals on‘X.

If E is a subset of a topological space, then E denotes the’
closure of B,'E* denotes‘the interior of E, and E' denotes the
compiement of E. Of course, if E is a subset of X, then'E* means the
interior of E relative to X, not relative to the whele plane. In
Section 7, we often denote two line segments by s and s'. Since the
prime notation is never used for complementation in that section,
there is no danger of confusing s' with the complement of s.

If £ is a function defined in a subset of Rz, then £(x,y)

. means £({x,y»). Thus we write £(z) for zéR2 and f£(x,y) for x,y€R

interchangeably. '
3. Baire Functions

In this section we review the main facts éoncerni_ng Borel
sets and Baire functions, and we prove some results that will be
needed later.

If C is any family of set.s, let C6 be the family of all sets

that can be written as a countable intersection of members of C, and



let Co be the family of all sets that can be written as a countable
union of members of C.

Suppose M is a metrizable topological space. Let Pl (M) be
the family of a11 open subsets of M and let Q (M) be the family of

all closed subsets of M. If £ is an ordinal number greater than 1,

let
PP = (\JQon,
n<g
m = (UJeron,
| n<ég

For any £, E éQg(M) &> E'€ PE(M)

For any subset LofM, E€ PE’L) (respectively Q (L)) if and
only if there ex:Lsts asetD€ P (M) (respectively Q (M)) such that
E=DnL.

PF’(M) and QE(M) are closed under finite unions and finite
intersections. PE(M) is closed under countable unions and QE(Mj is
closed under countable intersections,

1f n<g, then PO L Q") S PE A ().

Let FO(M) be the class of all Fc sets of M, and let GS(M)- be

the class of all G6 sets of M.

P2 (M)

F () and Q°(W) " = G,(M).

Let Y be a metric space. For any family C of subsets of M
we will say that a function f : M > Y is of class (C) if ’a'inc.l‘only if
f-l( U)€EC for every open set U & Y.

The following definition of the Baire classes is somewhat

different from the classical definition, but it seems more convenient



for our purposes. A function f : M > Y is said to be of Baire class
O(M, Y) if and onl;_if it is continuous. If £ is an ordinal number
_greater than or equal to 1, then f is said to be of ‘Baire class
E(M, Y) if and only if there exists a Sequence of functions'{f'n}n:1
mapping M into Y;-fn being of Baire class nn(M,Y)'for some n_ < g,
such that fh + f pointwise. |

If £ : M> Y is of Baire class £(M, Y) and if L is a subset
of M, then f|L is of Baire class £(L, Y). |

If K is a metric space, if g : K + M is continuous, and if -
f : M+ Y is of Baire class £(M, Y), then the composite function feg
is of Baire class &£(K, Y).

If Y is separable and if £ : M > Y is of Baire class &M, Y),
then £ is of class (P€+1(ND).[4, page 294].

If Y is separable and arcwise connected, if £ # 1, and if
f:M=>Yis of class.(P€+1(ND), then f is of Baire class &(M, Y) [4].

E+1

For any &, if £ : M > R is of class (P (M), then £ is of

Baire c%ass g(M, R) |6].

1f L& -t}

(M) and £:L + R is of Baire class §(L, R), then f
can be extended to a function ¥ : M + R of Baire class £(M, R) [6].

We say that a function £ : M + R is Borel measurable if, and

only if, for every open set USR, f_l(U) is a-member of the o-ring
of subsets of M generatéd éy the open sets.

If £ : M> R is of some Baire class &(M, R), then f is Borel-
measurable, and, conversely, if £ : M »~ R is Borel-measurable, then

f is of Baire class &(M, R) for some countable ordinal number £

-[7, page 294].



The proofs of Lemmas 1 through 6 are based on standard

techniques in the study of Baire functions.

Lemma 1. .Let M be a metric space, and let E and F be two P0 sets in

M. Then there exist two disjoint Fc: sets A and B € M such that
E-FSA and .F -E € B.

Proof. Let E = U En and F = U Fn’ where En and Fn are closed.
n=1 n=1
Then

E, F, € F (M A Gy(M.

It is easy to check that Fo(M) I\G‘S(M) is an algebra (i.e., is closed
! !
under complementation, finite unions, and finite intersections). We

inductively define a sequence of pairs of sets (An, Bn) as follows,

Let

>
1l
| ws]

E, , By = F MA.

Forn > 1, let

n-1

n
= ' = 1
A =E n - Bj , B Fnr\](;\l Al

By mdus:t:.on, A Bné FU(M) N G (M). Let

' .00 -]
A=k)lAn, p=J3, .
n=

Then A and B are F_ sets. Notice that

<]
~ Q

n
B,CF  and \JarceE,
j=1

Cade
—

from which it follows that



and
n '
B = an(j\;)l.Aj) 2 F NnE
Therefore
a2\ ENnE) = E-F
n=1
and

F - E.

B2 ) (F AEY
n=1

It only remains to show that ANB = ¢. Suppose x € ANB. Choose
2, m with 5(6 A, and x € Bm' If 2 > m, then & > 1, so that

Coasl
= ] 1
A, _EanBj_C_Bm.

!

Hence Xé Br'n --a contradiction. On the other hand, if 2 < m, then

m
= 1 1
B, = anQ Al C A,

so that keAi --another contradiction. We conclude that ANB = ¢. 0

If E is a subset of a space M, we let Xg denote the charac-

teristic function of E.

Lemma 2. Let L be a subset of a metric space M, and suppose that
T . c
Ee Fo(L) N G, (L). Then there exists a sequence {fn}n=l of continuous

real-valued functions on M such that fn > Xg pointwise on L.

Proof. Both E and L - E are in FOCL'), so there exist sets El,-

F1 € FC(M) such that

E=ElnL .~ and  L-E=F nL

1

By Lemma 1, there exist A, B € FO(M) such that ANB = ¢ and

El—FlgA,Fl-Elg B. We have



i

AA L and L-E=BAL.

tn
n
>

-]

Write A = L{ A, B = le B, where A , B are closed and A € A .,
n= n=

B < B ,, for éach n. By Urysohn's Lemma there exists a continuous

function fn : M~ [0,1] such that

u
e

fn(x) when x & An

£,(0)

{f } _; is the desired sequence. @

0o when x €B_ .

Lemma 3. Let L be a subset of a metric space M, £ : L » R a function
of class (Fo(L)) that takes only finitely many different values,

Then there exists a sequence {fn}n:l of continuous real-valued

functions on M such that fn -+ f pointwise on L.

[N

Proof. From Banach's Hilfssatz 3 [4], we see that there exist real
numbers Byseees @ and sets
!
El’ cees Eq € FG(L) ) GG(L)

such that

If we choose for each j a sequence {fn'J }n:1 of continuous real-valued:

functions on M such that fnJ > Xg pointwise on L, and if we set
- n .

£ T} . g]
= a, ,
n j=1 3 M

then {fn}nzl is the desired sequence.l

Lemma- 4. Let L be a metric space, f a bounded real-valued function

on L of Baire class 1(L, R). Then there exists a sequence {fn}:--'l



of real-valued functions on L converging uniformly to f, such that

each fn is of class (FOCL)) and takes only finiteiy many different

values. T

Proof. f is of class (FG(L)) and the range of f is totally bounded,
so an obvious modification of the proof of Banach's Hilfssatz 4 [4]

gives the desired result.®

-~

Lemma 5. Let M be a metric space, L a subset of M, f : L+ R a

!
function of Baire class 1(L, R). Then there exists a sequence' {fn}nzl
of continuous real-valued functions on M such that £ > f pointwise

on L.

Proof. We first prove the lemma under the assumption that f is

bounded. For any bounded real-valued function h, let
il = sup { |h(®| : x& domain of h} .

By Lemma 4 we can choose, for each n, a function g, L -+ R of class
(Fo(L)) such that g, takes only finitely many different values and

ey - £l <= et

81 > h =g -g,, forn>1.
Then, forn > 1,

< —,
21’1-1 2n-2

W W = g, - £+ £-g4l <ot

Each hn is of class (Fo(L)) and takes only finitely many different
values, so by Lemma 3 we can choose (for each n) a sequence' {th}jzl
of continuous functions on M such that hnj + h_ pointwise on L.

J
Set
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knj @ = -WUnll if hnj @ <-HInll
kI = Wn o if nJeo > g
kI = ndeo ae - fngfl <ndeo < lingfl

Then knj is continuous, kn:i -Jrhn pointwise on L, and " knj “ < “ hn“

zn_z . Therefore, if we set

£, 0= I k4,
J n=1 O

then the series converges uniformly and fj is continuous on M. We

claim that fj + f pointwise on L. Take any x € L and any ¢ > 0.
Choose m large enough so that —m_17 < %— e. For each n, choose j(n) so
: ST -

that

J>J(n)ﬁ"*3(x)-h(x)|<21 .

Let io =max {j(1),..., jm}. Then j > 1 1mp11es that

. m
|£.(x) - £ < |[£.(x) - T k J(x)l + | - J(x) S I on (x)l
J J n=1 n=1 n=1

m .
+] 3 h® - £0]
n=1

<z N P oo -n )+ e, - £
n=m+1 n=1
m
1 . €
+ (Z )—+——< = = €,
n=1 2n+1 2 3

<
- 2m-2

!

Thus fj (Sc) -+ £(x) for each x € L, and the lemma ié proved for bounded
J

f.

If £ is not bounded, let

-

o es me
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~g(x) = arctan f(X) (x€L). )

Then - % < g(k) < g— for every x € L, and g is of Baire class 1(L, R),
so there exists a sequence {gn}n:1 of continuous functions on M

converging to g pointwise on L. Set

1 1
h (x) = -127-4-5 if g (x) 2 -l.’;'+}1'
: T 1 . 1
h(x) = -5 if g2 >- =
= . T 1 T 1
hn(X) = gn(x) if -5 + -y < gn(x) < F- =

Then hn is continuous on M, - lzr— < hn(x) < -121, and hn - g pointwise on
L. Let fn(x) = tan hn(x) . Then fn is continuous on M and fn > f

pointwise on L. @ !

Lemma 6. If L is a subset of a metric space Mand £ : L » R" is a
function, then the following are equivalent.
(i) - £ is of Baire class 1(L, Rm).
(ii'i f is of class (FG(L)).
(iii) There ei_cists a sequence {f n}n:1 of continuous functions
mapping M into R™ such that fn -+ f pointwise on L.

This lemma is an easy consequence of Lemma 5.

Definition. Let gq be any point of R3 lying inside the bounded open
domain determined by s, By the g-projection of RS - {q} onto s% we
mean the function Pq defined as follows. If a is any point of

RS - {q}, let & be the unique ray, having its endpoint at q, that
passes through a, and let Pq(a) be the intersection point of £ with

Sz.' PCl is a continuous mapping of RS"-"{q} onto 82 that fixes every

point of SZ.
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Theorem 1. Let L be an arbitrary subset of Rz. Then a function
f :L~> S2 is of Baire class 1(L, SZ) if and only if it is of class

(F (1))

Proof. Assume that £ : L > s? is of class (F,(1)). s’c R?’., so by

Lemma 6 there exists a sequence {fn} p:1 of continuous functions mapping

R2 into Rs such that fn + f pointwise on L. Let

-1 3, I T
A, = £ ({veRr : |v] = 51)
-1 3. 1, ..
B = £ ({veRr pvlo< 53

! - -1 3. 001 1 )
c,6 = f  (iveRr cvl2 5.

0

Let :Eno = fn|A . According to [5, Lemma 2.9, page 2991, fn can be
n

extended to a continuous function g : R > (ver® : |v] = '-]é-}.
Define h_ : R% > RS - {0} by setting

a——— {

hn(x) . gn(x) : if. x € Bn

hn(x) fn(x) if x € Cn'

Since Bn’ Cn are closed, hn is continuous, and it is easy to verify
that h_(x) » £(x) for each x € L. Let k : R* > s? be the composite
function P0 0 hn' Then kn is continuous, and for each x € L,

k_(x) > P_(£(x)) = £(x). Thus £ is of Baire class 1(L, s?).m

Definition. Let M and Y be metric spaces. Then a function £ : M > Y

is said to be of‘honoréry Baii'e'class 2(M, Y) if and only if there

exists a countable set N&M and a function g : M > Y of Baire class

1(M, Y) such that f(ic) = g(x) for every Scé M - N.

1

Theorem 2. Let L be an arbitrary subset of R2 and let Y be either

the real line, a finite-dimensional Euclidean space, or s2. Then a
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function £ : L + Y is of honorary Baire class 2(L, Y) if and only if
there exists a countable set N € L such that f‘L-N is of class

(Fy (L - W).

Proof. Suppose that £ : L > Y is of honorary Baire class 2(L, Y).
Then there exists g : L > Y of Baire class 1(L, Y) and a countable
Cc = , i -
set N& L such thaﬁ fiL-N ' glL-N' But glL-N is of class (FU(L N)).
Conversely, suppose that f‘L-N is of class (Fo(L - N)), where
N is countable. We must show that f is of honorary Baire class

2(L, Y). First consider the case where Y = Rm. Write
£ = £, £, ..., £0).

Then'fiIL_N is of class (Fo(l‘ - N)) (i=1,..., m), and it follows that
fiIL-N is of Baire class 1(L - N,’R). Since L. - N &€ GS(L) , We can
extend fiIL-l;I to a function g, : L > R of Baire class 1(L, R). If we
set g(x) = <g1(.x),...,' gm(x)) , then g is of Baire class 1(L, Y
and g(x) = £(x) for XE L - N, so we have the desired result.

Now consider the case where Y = Sz. Since S2 < RS, there
eﬁcists, as we have just shown, a function g : L -+ R3 of Baire class
1(L, RS) such that g‘(x) = f(:;) for all ié_ L - N. Then g(L) - Sz is
countable, so there exists some point g in the bounded open domain

determined by_S2 such that q¢ g(L). Let h be the composite function

PCl o g. Then h maps L ihto Sz, and for each ;ce.L‘ - N,
h(x) = Pq,(g(xn = ,Pq(f(X)) = f(x).

IfUS S2 is open, then i

-1 -1, -1
R = g (P, ") € F (L),

— -
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so h is of class (Fo (L)). By Theorem 1, h is

1(L, Sz)', so we have the desired result.®

of ‘Baire class



CHAPTER I

- BOUNDARY FUNCTIONS FOR CONTINUOUS FUNCTIONS

If r is a positive number and if Yo is a point of a metric

space Y having metric p, then
S(r, y,) denotes {y €Y :o(y, y,) < the

We will repeatedly make use of Theorem 11.8 on page 119 in
[11] without making eiplicit reference to it. This theorem states

that if D is a Jordan domain in R2 or in R2

U {°°}, if v is the
frontier of D, and if o is a cross-cut in D whose endpoints divide y
into arcs y 1 and Yqs then D-a has two components, and the frontiers

of these components are respectively a v Yy and o U Yy (The term

cross-cut is defined on page 118 in [11].)

4. Domain of the Boundary Function

Definition. 1If f is a function mapping into a metric space Y, then

the set of curvilinear conver'gence of £ is defined to be

' {3( € X : there Qkists an arc y at x and there exists YEY
such that
lim £(z) = y}.
Z+X
ZE€EY
J. E. McMillan [10] proved that for suitable spaces Y, the set
of curvilinear convergence of a continuous function is always of type
af .

F .. We give a more direct proof of this result than McMillan's.

(This proof can be modified to give a more general result; see [9].)

- 15
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An interval of X will be called mondegenérate if and only if
it contains more than one point'. o |

Suppose y is a cross-cut of H, If V is the bo;unded component
of H - Y; let L(y) = th‘. Then L(y) = '[c', 'd]; where ¢ and d are the
endpoints of y and ¢ < d. Suppose { isv 'a domain contained in H. Let
I denote the family of all cross-cuts y of H for which y nH € Q, and

let

i = U™

YET
Let acc(®) denote the set of all points on X that are accessible by

arcs in Q.

Lemma 7. Assume that acc (2) is nonempty. Let a be the infimum of

acc (R) and let b be the sup.emum of acc (). Then
I(Q) = (a, b) .

Proof. Suppose x € I(R). Let y be a cross-cut of H such fhat

YAHSQ and Xe L(Y)*. L(y) = [c, 4], where c and d are the end—'
points of vy and ¢ < d. It is evident that c and d are in acc(f), so
a<c<x<dg<b, and ke (a, b). Conversely; suppose x' € (a, b).
Then there exist points c', d' € acc(®) with c¢' < x' < dr. Since @
is arcwise connected, it is easy to show that there eicists a cross-
cut y' of H, with y' "VH S Q, having ¢', d' as its endpointsl. But

then x' € (c', d') = L(y") , so x' € I(2). W

Lemma 8. If Ql and 92 are domains contained in H, and if

(1) I(sz]? N accis‘lli and I(Qz) n acc(szzi

L et - P v e e
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‘are.not disjoint, then 2 and Q, are.not disjoint.

Proof. We assume that Q and Q, are disjoint and derive a contradic-
tion..A Let a be a point in both of the two sets (1). Let y, be a
cross-cut of H; with Y.in HE 91, such that a € L(yi)* (.i =1, 2). Let
Ui and Vi be the components of H - Yi; v\.rherei'\Ii is the bounded component.
Observe that Y N H and Yo MH are disjoint.

Suﬁpose y,MHEV, and y, ANHEV,. Then, since y; N H €U,

U, has a point in common with V,. But, since U, is unbounded, Uy

cannot be contained in V2’ S0 U1 must -have a point in common with
¥, MH. This contradicts the assumption that vy, N H gvl, SO we
conclude that either y, N H $ V, or y, \H ¢ V,. Hence, e!ither
A H C_'-.U2 or v, NH EUl. By symmetry, we may assume that
yo NHE U, .

Q, does not meet y;, and @, does meet U, (because y, N H =
U, n oy, so g, EU;. Since a € 5'6'5(_5;, there exists a point

b€ L(y;)" such that b € acc(g,). But then b€ §, €T, and this is

*
impossible because the frontier of U; is disjoint from L(y;) . =
Theorem 3 (J. E. McMillan). Let Y be a complete separable metric
space and let £ : H » Y be a continuous function. Then the set of

curvilinear convergence of f is of type ch

.

8

Proof. Let {pk}k:1 be a countable dense subset of Y. Let {Q(n, m) }m:1

be a counting of all sets of the form
1 1
{€x,¥) 1 0<sy<z and r<t<r+}

where r is a rational number. Let {U(n, m, k, 2,)}2:1 be a counting

(with repetitions allowed) of the components of
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’ .
£ pd) N, m
,n’ k A
(We consider ¢ to be a component of ¢.) Let

A(n, m, k, g) = acc[U(n, m, k, pl].

Set

s =Y O U ") 1w, m, k, 1)) A R

n=1 m=1 k=1 g=1

Since I(U(n, m, k, g)) is open in X it is of type fér' It follows that
B is of type FoG . Let C denote the set of curvilinear convergence
of £. I claim that B € C. Take any b € B. For each n, choose m[n],

k[n], ¢[n] with l

(2) b € I(U(n, m[n], kn], o [n])) A A(n, m[n], k[n], 2in])

For convenience, set Un = U(n, m[n], k[n]l, g[n]). By (2). and Lemma 8,
Un and Un_‘_1 have some point 2 in common. For each n, we can choose

L (] 1. 1 :
an arc vy, c U, ,; With one endpoint at z_ and the other at z Then

n+l’
Yn(_‘.‘._Q(n+1, m[n+1]). Also,

b € RK(n+I, m[n+1], K[+ 1T, o[neI]) €U ) S A+, min+l]),

and therefore each point of Yn has distance less than _—nil from b.
HTZFT" 0 as n » «; hence, if we set y = {b} UU Yp? then Y’is_ an arc
' n=1

with one endpoint at b.

Since Un and Un+1 have a point in common,
-1 .1 -1 1 ,
£ 60 Py @™ £ S B

have a common point, and hence

!
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1 . Ll
S(;I:’ Pk[ri])- and S(_élwl’ Pk[n-l_-'l])'
have a common point. Therefore, if p is the metric on Y, then

""1 1 |

P(Pyrn1> Pxns1)) 27 * Tael < Tl
2 2 2
and therefore
T : Ty 1
, . z a1 . 5 — .
p(pk[n] pk[m_-r]) < icl p(pk[nfl_-l] pk[n+1]) < 521 2n+1-2 < 2n-2

Thus {pk [n]} is a Cauchy sequence and must’ converge to some point

p €Y. Since

yv. S U Cf (S(

n = "n+l = n+1’ Pk[n+1])) and
pk[n] > P,
.lim, £(z) = p. It is possible that y is not a simple arc, but
Zzy -.according to [12] we can replace y by a simple arc

y''€y. Thus b € C, and we have shown that B &C.

Suppose ¢ € C. Let Yo be an arc at c¢ such that f approaches

a limit p' along Yo Take any n. Choose k with p'€E S(——, pk) .

" Choose m so that ¢ is in the interior of Qin m) NX. Then Yo has

a subarc Yo , with one endpoint at ¢, such that

Y, -{c}€Qmn, m) N f—l(s(;—n, Pl

Hence, for some %, c € acc[U(n, m, k, 2)] = A(n, m, k, %). This

shows that

C g_ﬁO'C}C)A(n,m,k, 2).

n=1 m=1 k=1 Q=1

It is easy to deduce from Lemma 7 that the set
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AM; m, k, ) - IUG@, m, k, 2)) =

A, m, k, 8) - [1UG@; m, k, 2)AA@, m, k, D]

contains at most two points. It follows by a routine argument that

n U A(n m, k, %) -nu [I(U(n m,k 2,))I\A(n m, k, 2)]

me

is countable. Since

m \J W@, n, k, ) AEE, &K O] = BEC
n m,k,R

(MU acmx, 0,

n mk,2

C - B is countable, and therefore C is of type Fose |

Next we will show that the foregoing theorem is as strong aé
possible; in this sense: if A is any set of type Fos contained in X,
then there exists a bounded continuous complex-valued function £

defined in H such that A is the set of curvilinear convergence of f.

The proof is unfortunately quite long.

Definition. Let E1 and E2 be two sets on the real line. A point p

on the real line will be called a splitting point for E1 and E, if

either
x; <p for all x, €E; and p 2 x, for all x, € E,

or xzipfo:z'allchEE2 and p <X forallxleEl.

1

We will say that two sets E1 and E2 split, or that E1 splits with EZ’

and E

if and only if there exists a splitting point for E1 9

Lemma 9. Let E be an Fo set in R. Then there is a sequence {E }n:

of sets such that
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(1) En is bounded and closed
(i) if n $ m, then either E. and E_are disjoint or E and

E, split ' -

oo

ain "k = E..

n=1

Proof. We can write E = %:Jl An where A, is closed, Ang An+1 for all
n, and A1 = ¢. '

- Observe that if I is any open interval, then there exists a
countable family' {Jn}n:1 of bounded Ocolosed intervals such that
n4m=yJ andJ split, and 1= nul J_. Since any open set of
real numbers is a countable disjoint—union of open intervals, it
follows that for any open U there exists a countable family {In}n_
of bounded closed intervals such that n # m .’.'? In and Im split, and

©

v=J) 1.
n=1
For each n, let {II:;}j be a family of bounded closed inter-

vals such that j % k P 2 IIJ} and Ik split, and A U I Let

F o= ap u’{x‘j‘n A, in=1,2,.5]= 1, 2,...}.

Then ¥ is a countable family of bounded closed sets, and

E

]
g
]
>
f—t
C
1C
|
[
=
e}
<+
-
D
o
| —

] [}
C -
uh C
5’:;
A
D
o C8
-
I
>
C
iC
C
o

, 2
Let Fl and F, be any two distinct members of ¥ . If either F; or Fy

is A1 = ¢, then F1 and F, are automatically disjoint., If neither

F1 nor F2 is Al, then we can write
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. _ n(l) 4 n(2)
Fy F) O A+ @ Fp o= Loy 0 Ay
If n(1) < nE2), then n() + 1.'5'_n(2)',,so
F,o= 1024 C A C A ' and therefore ¥, ‘and F. are
2 T HNMAMoaShe & n(1)+1’ a srerore ¥y 2 #F

disjoint. A similar argument shows that if n(2) < n(1), then F, and

1
F2 are disjoint. Thus, if F1 and F2 are not disjoint, then n(1) =

n(2) and we have

n

- n
Fpo= LN Ay ad By L2y N Avere

where n = n(1) = n(2). But then j(1) j(2), so i and IV
| J

i (1) i(2)
split, and therefore F and F, split. So we have shown that any two
distinct members of  either split or are disjoint.

If ¥ has infinitely many distinct members, let E;s By, Egue
be a counting of F . If  has only finitely many distinct members,
let E;,..., E_ be the members of 7 and let E, = ¢ for k >m. 1In
either case,’ {E } :l'is the desired sequence. i

If F is a closed subset of the real line, then by a comple-

mentary 1nterva1 of F we mean a component of F' (If F = R, then ¢

is considered to be a complementary interval of F.)

Definition. By & special family we mean a family 4~ of subsets of R

such that

(3 = 1is nonempty

(4) . each member of Z~ is bounded and closed

(5) there exists a sequence’ {F } -1 of members of 4 such that

every member of J is equal to some Fn’ and the following condltlon

is satisfied.

(5a) If m > n, then either Fm is contained in one of the complementary
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intervals of Fn, or.else Fm splits with.Fn.

Lemma 10. If E is an F, set in R, then there exists a special family

JF such that E =U9=.

Proof. By Lemma 9 we can choose a sequence‘{En}nzl,of bounded closed

sets such that if n # m then En and Em either split or are disjoint,
oo
and E = l } E .
n=1

Let'nl = 1 and let F, = E;. Now suppose that n;, m,,..., ng

are chosen and F F

12 Foseees Fns are chosen so that
(1) 1=mn; <n, <...<ng
(ii) Fi is closed and bounded (i = 1,..., ns)

(iii) if n, >t >t > 1, then either F. is contained in one of

the complementary intervals of Ft’ or else Fr'splits with Ft

(iv) if 1 < i <n_, then there exists j € {1,..., s} such

that Fy CE.

J n s l
CRACANERVAR
i=1 i=1

We construct F_ o005 B as follows. Let"éi be the family of
ng+l Ns+1

complementary intervals of the bounded closed set
n s
\~i)Fi = -k_} E;-
i=1 i=1

We assert that Es+1 meets at most finitely many members  of &. If this
assertion is false, then there exists an infinite sequence'{In}nf1 of
members oftg'SUCh that n # m implies Inr1 Im = ¢, and there exists

(for each m) a point x €L NE_ .. {xm} is a bounded sequence,

m=1
and n $ m implies that x # x . From this it follows that {x } _,

has either a strictly increasing or a strictly decreasing convergent
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subsequence. We will assume tha‘t'v{xm(k) }k:1 is a strictly increasing
convergent subsequence; the reasoriipg is similar in the case of a
strictly decreasing convergent subsequence. Say Im(k) = .(ak, bk).

Then ay < xm(k)‘ < bk’ so since xm(k)‘ < xm(k+l) < bk+1 and

'xm(k)¢ Ln(ke1) W€ must have Xnk) S %s1 < Xpkse1)r Therefore, if
we let : |
lim

X% ke Xpex)e

then X = 1];_13: a, also. Moreover, for k > 2, ay is a finite real

s : .
number, so that aké U E,. Therefore there exists u €{1,..., s}

i=1
such that aké Eu for infinitely many values of k. Consequently

X € Eu. But since xm(k) € Es+1’ X €Es+1 also. But then x € Eu n Es+1’

so that Eu and Es+1 must split and X must be a splitting point for

Eu and Es+1‘ Since infinitely many & lie in Eu, Eu contains points
that are less than X; and ES+1 also contains points less than X;
therefore Eu and Es+1 cannot split, and we kave a contradiction. This

proves the assertion. Let

g o= 8}V {ln B, ' l€dand InE_ + ¢},

Let n ., equal n, plus the number of members of 3. Let Fns+1,. ces

F . be all the members of §. We must show tHit conditions (i)
s+

through (v) are still satisfied when s is replaced by s+l. Conditions

(1), (i), and (iv) are obvious. The verification of (iii) is divided

into three parts. Suppose no12r>t>1.

Case I. Assume that n,>r>t>1., In this case we already know

that either Fr is contained in one of the complementary intervals of

Ft or else F.r splits with Ft'
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p2r>n. >t > 1. There exists v € {1,...,s}

Case II. Assume that ns +

4 [ s . BTN . . .
such . that Ft "‘.Ev'. Elther‘Ev and Es+1 are disjoint or they split.

Case Ila. Ass;ume.EV and Es+1 are disjoint. Either-Fr = ¢ (in which
case Fr‘ is certainly contained in a complementary interval of Ft) or
else F . g ¢ and F, = InE_ ., for some IEL. Let J be thz smallest
— * 1]
closed interval containing F_. Then J €I andJ € I € (U E;) , so

i=1

. . :
that J does not meet E . The endpoints of J lie in F. <E SO

s+1?
neither endpoint of J lies in Ev' So J does not meet EV and therefore
J does not meet Fes from which it follows that Fr'is contained in a

complementary interval of Ft' ’

: : i i c <
Case IIb. Assume that Ev and Es_|_1 split. Since Ft - EV and Fr — Es+1

it follows that Ee and Fr split.

Case III. Assume. that n g, 2r>t>n.. If either Fr or Ft is ¢,
it is clear that Fr is contained in a complementary interval of Ft'

Otherwise, there exist I,, I.zé@- such that- In I,=19¢ and

F, = I;nE,, and F = I,NE

Since Tl and TZ evidently split, Fr and F, must split.
Thus ¢ondition (iii) is verified.

As for (v), it is clear that

/.S c nS+1
E_ . - E. & &J F.SE
s+l &éjl i™ j= S+l j s+1°
so that
‘s+1 S S
o By = (U Ej) v Bger - U Ey) -
i=l =1 ;i=1
n n s s+1
S S+1 .
< (U v FIC (U EpuE,, = U E,.
J=1 J=ns+1 J i=1 i=1
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s+l n n , n .

- ] astl ‘ S+}.

Hence UEi = _(U-Fj)U(‘ ) Fj) =.,U-Fj.
i=1 L j=ns+1. j=1

Thus we have shown that we can construct sequences {n, }J =17
{F }k -1 “in such a way that conditions (i) through. (v) are satisfied
for every value of s. If we set/F = {F t k=1, 2, ...}, it is easy

to verify that’F is a special family and that E = UfFl ]

Definition. If-,'F1 and ;7:2 are two families of sets, let
FAF, = {F,nE, : F € adF,eFl.

Lemma 11. IfZF and/F are two special families, thenFAJFis a

special family.

P?:oof. Conditions (3) and (4) in the definition of a special family
are clearly satisfied, so we just have to verify (5).

Arrange all .pairs of positive integers in a sequence
according to the scheme shown in Figure 1. Let (a(k), b(k)) be the

kth term of the sequence (k =1, 2, ...). Observe that k < 2 if and

1"I'he' reader may find it amusing'to derive the following

formulas for (a(k), b(k)). For real t, let [[t]] denote the largest
integer that is strictly less than t. Then

a(k) = 2([['8“* ’ 1112 (D - ksl

Larm) « £ - L 1)““8"*1”)c[[m1 1 %c-l)[[”SE*lll) i

o

+1

[L(I[/ERFTI] + 3)([/RFTI] + 1) - k + 1 if [[/BK¥T]] is odd

! %‘([[VSk*'l]] + 2)[[VBKFT]] - k +# 1 if [[v/8k+T]] is even,

and






[

28

only if either a(k) + b(k) < a(%) + b(&) or else a(k) + b(k) = a(®) +

b(2) and b(k) < b(2). Thus k < 2 implies.that either a(k) < a(f) or
b < b(D). |

Let {Fn}n:1 be a sequence of elements of J such that every
member of /F is equai to some F_ and such that condition .(5a) in the
definition of a special family is satisfied. Let” {F_} : ‘be a
similar sequence for 'j: Set

Fk = Fa(k) N Fb(k)‘

Then {Fk}k _; is a sequence in F/\‘j’ such that every member of F A j:"'
is equal to some ﬁk‘ We must show thag condition (5a) is satisfied.
Suppose that & > k. Two cases occur;
Case I. a(k) < a(®).
Note that Equ Fa(k) and ﬁzs; Fa(z)' Either Fa(z) is contained in
one of the complementary intervals of Fa(k) (in which case ﬁz is
contained in a complementary interval of ﬁk), or else F ( and F

a(®) a(k)
split (in which:case E, and F split).

Case II. b(k) < b(R).

In thls case a srmllar argument shows that either F 1s contalned in

b = 2([["8k* L 11] - [[’Sk* 2313 + x

VAT « D(ARTI] - 1) + k  if [[/BKA]] is odd

l %[['Sk"'l]]([['SK*l]] -2) +k if [[v/Bk+1]] is even.

—([[m] * - ( 1)[['8k+1]])([[f§1zm] 5 _(_1)[[/8_k71']]) &
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a.complementary. interval of f"k'or Fi.anlek split.. Thus condition

(5a) is -satisfied, andJFAF is a special family. W

Lemma 12. Let El’ E

suppose that {Fl andf]"2 are special families such that El = Uq-’l and
E, = Usz' Then E, = U(ﬁ/\‘Fz).

The proof is obvious.

2 be two Fo‘ sets.in R such that El c EZ’. and

Next we introduce some notation.
Let J be a nonempty interval on X with endpoints a, b (a < b).

By Trap (J, €, 6)(where 6 € (0; 1r-) and € > 0) we mean the interior

of the trapezoid shown in Figure 2. That is,
Trap(J, €, 6) = { <$c,y) :0<y<eg,a+yctn6<x<b-yctn6}.

For 08¢ (0; 1), let Tri (J, 6) be the closed triangular area shown in

Figure 3. That is,
Tri (J, 6) = { (x,y) :y_>_(_)anda+yctnei$cib-yctne}.

If xoe X, € >0, and 6 € (0, -TZL), let S(xo, e, 0) denote the open

Stolz a'ngle‘shown in Figure 4. That is,

S(x, e, 0 =1 {x,yy :0<yc<e,

X  +y ctn (n-e)<x<x6+yctn'e}.

If K is a closed set on a real line, let J(K) be the smallest

closed interval containing K. If K is boundéd, closed, and nonempty,

e>0,and 0 < B <a < -1-27-, then we define

B(K, ¢, o, B) = Trap (J(K), ¢, o) - \J Tri (I, 8),
IQJ

where & denotes the set of complementary intervals of K.



€
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Figure 2.~-Trap(J,€ , 0 )
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Flgu
re 3.--Tri(J, ©)
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Figure L“.""U(X )
o’ s 9 e

X axis



(6)
(7

(8)

€))

(10)

(1)

(12,

(13)

33

I

We . state without proof the following readily verifiable facts.

B(K, e; o, B) is an open subset of H.

S(e; e; ®) is an open subset of H.

If K, and K, split, then for any e, ez; o, B,
B(KI; CPRCH B) and B(Kz; EZ;‘ o, B)

are disjoint.

Suppose that KI_QK, e>e >0, and 0 <B < By <ay<a <g.
Then

C
B(Kl’ €15 O Bl) NnH<B(KK, €, a, B).
Suppose l(1 is contained in one of the complementary intervals

of K, and suppose €, a, B are given. Then there exists § > 0
such that for every n < §,

B(K, €, @, B) and B(K;, n, a, §)
are disjoint.

*
Suppose that o < 6 < %and Xo¢ J(K) . ‘Then, for any €, €1»
/ .

8,

B(K, €, @, 8) and S(xo, e)s 0)
are disjoint.

: *
Suppose that X, € Kn J(K) and 8 <a <0 < % Let € be given.

Then the.rg.e;'c.igt.s & > 0 such that for every n £ 6,
Sx,, 1, 8) nHEB(K, ¢, a, B).

N

Suppose that € < €' and 6' < 6. Then

S_(i; €, 8) NnH SS(;(O, e', 8').
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(15)

(16)

(17)
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Suppose X ¢ Kand €, 0, B, 6 are given.. Then there exists

6 > 0 such that for.every n < §,
S(xo, n, ) and  B(K, €, o, B)
are disjoint.

If Xo Jf ;(1 and €, 6 are given, then there ekists § > 0 such

that for every n < §,
S(xy, €, 8) and  S(xy, n, 6)

are disjoint.

B(K, €, o, B) n XK.

_'_Tscico; €, 8 NX = {x_}.

Definition. If‘F is a special family, let %F° be the set of all

members of F that have two or more points.

Definition. Let JFbe a special family, let E be the set of all end-

points of intervals J(F) where FEF, F $ ¢, and suppose that

0 <B<ac<b <.-121-. By a pair of 'special o, B, 6 functions for JF we

mean a-pair (e, ), where € and § are positive.real-valued functions,

the domain of € is E, the domain of & is 2, and

(18)

(19)

(20)

for each n > 0, there exist at most finitely many Fe{F2 such

that §(F) > n;

for each n > 0, there exist at most finitely many e € E such

that e(e) > n;

if e, e' €E and e $ e', then

S(e; e(e); 8) - and S(e"; e(e'), 0)
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“are disjoint;
(21)  if F, K €F° and F 4 K, then
B(F, §(F), o, 8) and B(K; 6(K), @, 8)
- are disjoint;
(22).  if e €E and F € F°, then
S(e, e(e), 6) and . B(F, 8(F), «, B)

are disjoint.

Lemma 13. Let’F be a special family and suppose that 0 < B < a < 6 < %

Then there exists a pair of special o, B, 6 functions for .
Proof. Let {Fn}n:1 be a sequence of members of ¥ of the type referred

to in condition (5) in the definition of a special family. Let
{Fz(n) = {Fefz : F = F_ for some k < n}

E = set of all endpoints of intervals J(F) for

FEF F # ¢

E(n) = {e €E : e is an endpoint of J(F) for

some k < n for which F + ¢},

If J(F1) has one endpoint e, set e(e) = 1. If J(Fl) has two
endpoints €15 €y then by (15) we can choose e(elj <1 ande(ez) <1
so that S(el, e(elj, 8) and S(ez, e(eé), 8) are disjoint. If Fle ‘fz,
set G(Fl) = 1, In this case, J(Fl) has two endpoints S and e, and
(by (11)) B(F;, 8(F;), @, B), S(e;, e(ey), ). and S(e,, (e,), 6) are
all disjoint.

Now suppose that e(e) and §(F) have been defined for 5.11



. 36

e € E(n) and all F 672@1) -in.such a'way.that .

(1) ife, o' €E(m) and e § ¢!, then S(e, e(e), ) and

S(e?,e(e'); 0) are disjoint;

(ii) if F, Kéff"z(n) and F % K, then B(F, §(F), a; -8) and
B(K, §(K), o, 8) are disjoint;

(iii) if e € E(n) and Fe F2(n), then S(e, e(e), 6) and
B(F, 6‘(F), d, B) are disjoint; .

(iv) if e € E(n) and k < n is the least integer for which
e € E(k), then €(e) ijl(‘,
(v) if F éfz (n) and k < n is the least integer for which

F € F°(K), then §(F) < 1 !

We must extend the definitions of € and § to E(n+l) and
‘fz (n+l) in such a way that conditions (i) through (v) are still

satisfied when n is replaced by n+l.

Case I. If Fn+1 ¢ or if Fn+

fz (n) and E(n+1)

1 = Fy for some k < n, then Tz(n-i-l) =

E(n), so that nothing is required to be done.

Case II. If le consists of a single point e and if e € B for some
kK < n, then (since Fn+1 and Fk must split in this case) e is an
endpoint of J(Fk), so that again ‘_’Fz(n+1) =f2(n) and E(n+l) = E(n),

and nothing is required to be done.

Case III. Suppose that Fn+1 consists of a single point e, and that
for each k < n, e & F.. By (14), (15), and the fact that E(n) and
- 1
(Fz(n) are finite, we can choose e(go) € (0, El-'l—) §o that S(eo, e(eo), 8)
is disjoint from S(e, e(e), ©) and from B(F, §(F), o, B) for each

e € E(n) and each F € F(n). The construction is then finished for
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E(n+1) and‘F’(n'-l-l) .

, .
Case'IV. Suppose that Fn +i contains at least two points and that, for
each k <n, F, $ F ,. For each k <n, either F , sp11.t.s with F, , or
-else F i1 is contained in a.complementary interval of Fy. Since {FZ (n)
is finite, (8) and (10) show that we can choose 6(Fn+1) € (0, m) so
that B(Fn+1, G(Fn-l-'l)’ a, B) is disjoint from B(F, 8(F), o, B) for each
Fe€ Tz(n) .

Say e € E(n). Then e is an endpoint of J(Fk) for some k < n,
so (since F a1 either splits with F, or is contained in a complementéry

*

interval of F,) e etJ(le) . By (11), B(F

pe1s 8CFpy) o B) and

S(e, €(e), 8) are disjoint.

Let e, eo' be the endpoints of J(Fm_l).

Case IVa. 'eo, eo' € E(n). i

In this case the construction is already finished.

Case IVb. e € E(n) and e ' &€ E(n).

If eo' €F, for some k < n, then Fn+1 splits with Fy ., SO that
eb' must be and endpoint of J (Fk) --which contradicts the assumption
that eo' ¢ E(n). Hence, for each k < n, eo' 4’:‘ Fk' By (14), (15),

and the fact that E(n) and sz (n) are finite, we can choose

1

e(eo') € (0, H-i-'l_) so that S(eo', e(_eo;), 8) is disjoint from

S(e, e(e), 6) and from B(F, &(F), a, B) for each e € E(n) and each

FEF(m). By (11), S(e ', e(e ), 8) and B(E , , 6(F,, ), o, 6) are

disjoint. Thus the construction is finished for E(n+l) and‘]-"z (n+1).

]

Case ;Vc. R 42 E(n) and eo' € E(n).

This case is essentially the same as Case IVb.
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Case.IVd.. e_ ¢ E(n) and e, §E®). ;_
1f e € F, for spnie k _'<_n; then F_ 77splits with Fk; SO

eo.j.s an endpoint of J(Fk); a contradiction. Thus eo¢ Fk for k in,

and similariy eo' & F]'( for k i.‘.’..'. 'I‘herefore; by (14) and (15); we can

choose s(eo) and e(eo') € (O; ‘E%T) so that S(e(’); e(eo), 8) and

S(eo', e(eo'), 8) are’disjoint and each of S(eo;, e(eo); 8) and ’

S(eo_", e(eo‘); 6) is disjoint from every S(e; e(e), 6) (e € E(n)) and.

from every B(F, §(F), o, 8) (FEF (). By (11), S(e,, c(e), 6 and

S(eo', e(eo'), 0) are each disjoint from B(Fn+1; G(Fm_l), a; B), so the

construction is finished for E(n+l) and ‘fz (n+1).

Wei have shown that we can inductively define e(e) for evexry
e € E and §(F) for every F G{FZ in such a wa‘y"that (i) through (v)
are satisfied for every value of n. Conditions (20), (21) and (22) in
the definition of a pair of a, B; 6 special functions are thus auto-
matically satisfied by (e, 8). We must verify that (18) and (1Y) are
also satisfied.

Suppose (19) is false. Then there éxists n > 0 and there
exists an infinite sequence {ek}k:1 of distinct members of E such that
e(ek) > n for every k. Let m(k) be the least ir,}t.eger for which % is
an endpoint of J (Fm(k)) . Each J (Fm) has at most two endpoints, so,
since the e, are all distinct, there exists (for given m) at most two
values of k for which m(k) = m. Therefore there exist infinitely
many distinct integers among m(1), m(2), m(3), .... Consequently
there exists j withlmlg)—. < n. But, by (iv):, s(ej) f‘-ﬁt—JT <n, a |
contradiction. So (19) must be true. A similar argument shows that

(18) is true. @
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L(aml'natlil.q .Let F be a ‘'special family, 0 < B <.a < © < X and.let E be
the set of all endpoints of intervals J(F) .for F € . .Suppose (e, §)
is a pair of special a, B, 6 functions for F. If €y, 8 are two real-

valued functions having domains E and fz respectively, and if

0 < el(e) < e(e) for all e € E, and

0 < 5,(F) < 5(B) for all FEF,
then (el; §,) is a pair of special «, B, 8 functions for /F.
Proof.. This follows from the fact that
S(xo, e', 08) C_:_S(xo, e", 9)
and B(K, €', a, B) & B(K, ", a, B)
whenever ' < €". I

Theorem 4. Let A be any set of type Fs in X. Then there exists a
. bounded continuous compleic-valued function f defined in H such that A

is the set of curvilinear convergence of f. '
-]

P?oof. We can write A = nrjl An’ where’ each An is of type Fc and
An+1 g__An for every n. For each n, let {F';1 be a special family with

UT}; = A. Let
=R
Fo =FAF, forn > 1.
By Lemmas 11 and 12, together with mathematical :'Lnduction,{F';1 is a
special family and \J{,F']'1 = An 'Moreover, every member of T;wl is a
subset of some member of JF . '
: ® . . . m
Let {B n}n=1 be a strictly ascending sequence in (0, z

converging to ITS-
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Let’ {qn}nzl.be a strictly .descending sequence in '.(g-,%-)

» T ' '
converging . to 3 ..
' o . : . .em 3w

Let {en}n=1 be a strictly ascending sequence in (71" T

converging to %F—

Let En be the set of all endpoints of intervals J(F) for

~

Fe F,. | S
Let (s(l,l); 8§(1,-)) be any pair of special g, Bl, 61

lfunctions. for 5:1

Now suppose that for each k < n we have chosen a pair of
special dk, Bk; ek functions (e(k,*), 8(k,-)) for:']:"l'( in such a way
that ’ -

" (1) whenever 1 <k<n-1,ec€ Ek+1’ F €ﬂh=i;2, ‘and
e €EF NJ(F) , then

S(e, e(k+1, e), ek,’_lTanB(F’ §(k, F), Oy Bk);

(ii) whenever 1 <kz<n-1,e€E ,, and e € E, then

5Ce; e(k+1, &), B, NH ESCe, ek, €), 8,);

~ ~ [
(iii) whenever 1 <k <mn - 1, KR, ;> Feﬁ(z, and K € F, then

B(K, S0+, K, a5, Brap) NH B, 8k, F), o, 8-

Then we cons.truct (e(n+l,:), 6(n+l,*)) as follows. Let
(e, 8) be anylpair of special o ., B ;% 8 .4 functions forTl'_Hl. if
e €E . - E , then for some unique F € 'Fl',lz, e€F nJ(F)*, so by (12)

we can choose £(e) > 0 such that n < £(e) implies

S(e, n, 6, ,;) NHEB(F, §(n, F), a, B).

We set e(n+l, e) = min {e(e), &(e)}. On the other hand, if e €E , NE ,
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e(n, e)}.

N

then we .set e(n+l, e) = min {e(e) ;

If Féﬂ"'rzl_l_l, then there exists a unique K €-"f‘;21 with. F K.

Set’ )
. . . , N 1 R
§(n+l, F) = min {G(F)!—z—s(n, KX)}.
By Lemma 14, (e(n+l,-), 6(n+l,-)) is a-pair of special o .,
Be1® Onel functions for ﬁ-l-l’ and by (13) and (9), conditions (i),

(ii), and (iii) are still satisfied when n is replaced by n+l. Thus
we can inductively construct a pair (e(n,°), 6(n,*)) of special s

B, 6, functions for{Fn in such a way that conditions (i), (ii) and

n’
(iii) are satisfied for every n.

Let

U - [U S(e, e, ), en)} v

eeEn

A 3 6 3 3 3 .
Fké)f'rzl B(F, §(n, F),a 1 Bn)}

Then Un is open. For fiked n, all the various sets S(e, e(n, e), en)

(e € En) and B(F, é§(n, F), a _Bn) (Feﬂ?"rzl) are open and pairwise dis-

n’

joint, so that every component of U h is contained in one of the sets
w2

S(e, €(n, e), 6 ) (e € E ) or B(F, 8(u, F), o, B,) (Fean). It

therefore follows from (16) and (17) that if Q is any component of Un’

then
(23) o nxQAn.

From the fact that (e(n,-), é(n,*)) is a pair of special s
B,» 8, functions for{F';l together with conditions (18) and (19), it

follows that
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o=

oo = (U sEEE ey A v
e€E

n
Consequently, conditions (i), (ii), (iii), together with the fact
that
€E E => e € Fn J(F) for some Fe F !
e n+l ~ n or S n’
U C
show that Un+1 n HC Un for every n.

By Urysohn's Lemma, there exists a continuous function

8y ¢ H - [0, 1] such that

. 8,(2)

and _ gn-(z)

1 fo:rzeH-Un

. |
J for z € Un+1 N H.

Let g(z) = Z —-}l- gn(z). Then 0 < g(z) < 1, and the series converges
' n=1 2" ‘ '

- uniformly, so g is continuous on H.

If z€H - Un’ then z €H -Um for everymlln, so that

1=g (2) =g, =g,,(2) = ..., and hence

n+2
(24) g(z) > = —= = (z€H-Un).
m=n 2 2 .o
Also, if z €Un+1, then z eul, UZ’ oo Ux}-l-l’ so that
0 = g4(2) = gy(z) = ... =g, (2), and
@) s < 1 L - L zeu,).
' =n+1 2" 2" n

We assert that

(26)  for each x_€ A, g(z) > 0 as z > x_ with z € S(x_, 1;.'% .

Take any natural number n. Since X, ' An+1 = Uﬁl +1° either

" ' * ) .
X, € E ,, or else x € FN J(F) for some F €F., - In the first
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ca’.se, set n = €(n+l, xo). In the .second case, (12) shows.that we can

. choose n > 0 so that

S(x,, n, g9 SB (F, s(mtl, F), o g, 81090

suppose <X, y> € S,(%» 1, %l) and y < n. Then, in the first case,
CEm e ) .

{x, Yy € S(xo, n, 8—') = S(xo, s(nl+1, xo), 6n+1) C_:Un+1’ and in the

second case,

<x, y» € S(xo, n,”-gl) C B(F, 6(n+l, F), So, by

n
(25),

(<x, y> €5(x,, 1, 39 and y < n)'=> <x, ¥) € U,
= o0 < glx, y) <L

_’n'
‘ 2

+1° Bn+1) < Un+1'

This proves (26).

Let X, be a point in X and y any arc at X .Suppose g(z) + 0 -
as z X, along v. Then vy has‘ a subarc y' with.ohe endpoint at 5(0
: -1..°1 "1 )
v o_ P S - <
such that vy {xo} Cg (( = =) By (24), v {x }<U .

: : 27 2 o
Therefore, by (23), X € An. Since n was arbitrary, xoe Q An = A.

Thus,
(27) if there ekists an arc vy at X such that g(z) >~ 0 as 2z
approaches XO along y, then X € A.
Now define
) = oglx Y singsriglk, ) (Kx, y> € H).

If x_ € A, then, by (26), £(z) » 0 as z » x_ with z €5(x, 1, 39.

Thus every point of A is in the set of curvilinear convergence of f£.
Conversely, suppose X, is any point of the set of curvilinear

convergence of f. Let y be an arc at X, such that f approaches the

limit ¢ + di along y. Then g approaches the limit d along y. If d
. . , :
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is different from zero, ;ﬂeq g(ﬁc, y) sin 31,- (the real part of f) cannot
approach any limit along y -- a contradiction.. Therefore g approaches
the limit 0 along vy, and, by (27), io € A. Therefore A is the set of

curvilinear convergence of £. M

5. Boundary Functions for Continuous Functions

Lemma 15. Let E be a metric space, Y a separable metric space.

:
Suppose that ¢: E > Y is a function having the following property.
For every open set U &Y there exists an E set L S E and a countable

set N €E such that
-1 -1
@ (WCSLC ¢ (U) uN.

. Then there exists a countable set M S E such that q’lE-M is of class

(Fq (E -M).

Proof. Let B be a countable base for Y. For each BE®, let L(B) € E

be an F  set and let N(B) € E be a countable set such that

e l®) cLm € ¢l® v NE)

Let M = U N(B). Then M is countable. Let E = E - M and let
Be® °
®, = <P|Eo. We show that ¥, is of class (Fc (Eo)) .
Let W be any open subset of Y. If p € W, there exists r > 0
such that S(r, p) € W. Choose BE® so that p EB S S(%'— r, p). Then

B &SS(r, p) €W. It follows that

w=.\ﬁ) p= \UJ 3 -
Bed(W) B EAM

where (QQ(W) = {BEB : ?,C_.W}.» Therefore

_— s .
®, (W) =E_ N W) = E.N /- (B)
"o o N ¥ o BeUaum‘"
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GEHU L(B)

BeEQW)

CE N (@1 (B) u NB)]

° BEAQMW) *

C E N U [q?l(ﬁ)UM]
B € @Q(W)

= E N U tp'l(F)
BEQW)

= E.nglm = (9;1 ).

Consequently <p;1(W) =E Ng %é(m _L(B), so (P;l (W) is of class

(F (E)). B

Theorem 5. Let Y be a separablé metric space and let £ : H~> Y be a
continuous function. Suppose that E € X aind that ¢@: E~>Y is a
boundary function for f. Then there exists a countable set M € E

such that (P|E-M is of class (F.O(E - M).
'Proof. Let U be any open subset of Y, and let W= @'. Let

E, = {x€X: there exists an arc y at x, having one

endpoint on X , such that y 2 (x} Ef"l(U)} :

K = {Sc € X : there exists an arc y at x such that
y - {xy £ty

Ob serve that

eltowelU:E,
n=1 n

and (p-l(W) < K.

For the time being, let n be a fixed natural number. For each

x € K we can choose an arc Yy 8t X such that

Y - {x} & H N f—l(W) .
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Since an arc.at x is by definition a simple arc, Yo - {x} is a
connected set and hence must be contained within one .nonempty component
of H n f’l(W) .. Let U, denote this . component (for each x € K)'..

Let T be the set of all points of K that are two-sided limit
points of E . We claim that if x; y € T, then x 4 y implies
Ux a) Uy =¢. If Uk N Uy % 95; then (since Ux and Uy are two components
of the same set) U‘x and Uy are equal. Let p be the endpoint of Yy
lying in Ux and let q be the endpoint of Yy lying in Uy = Ux' We can
join p and q by an arc y lying in Ux' Putting Yy Yy and Y together,
we obtain an arc o with one endpoint at x and the other at y, such
that o - {X, vy} Q U)‘(. According to [12] we can choose a simple arc
o' € o having one endpoint at X and the other at y. Of course,

a' - ix, YIS UXQ H N f'l(W) . Let I be the open interval in X with
endpoints at x and y, and let J = X - IT. Let B be the bounded
component of H - o' and let A be the other component. Since X, is
unbounded and does not meet o', X SA.

Because X is a two-sided limit point of En’ we can choose a
point w € 1 r\En. Let 8 be an arc at w, having one endpoint on Xn,
such that g - e f-l‘(U) . Then B8 does not meet a' (because
o' - {x, y} £ L) and £1W) A £71W) = ¢), and therefore (since
g '-  {w} contains a point of Xn C AR . {w} € A, It follows that
w €A, This; however, is a contradiction; because the frontier of A
(relative to the finite plane) is a'v J. We conclude that, for x;y EeT,
x 4 y implies Uy NU = 4. |

An open set in the plane has only countably many components,

so it follows that T must be countable. Let S be the set of' all

e e e i
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points.of En that are.not two-sided limit . points of TE'n. .We know that

S is.countable, so

/

KnNE

N [Kn (En -8}V [Kns]

Tulkns] .

is countable.
©

Let N = KN E = U'(K NE). Then N is countable, and,
- n n
1 n=1 n=1
since ¢ (W) €K, -

Ly € cenl | E
¢l Senl e CeEnlJE
n=1 n=1

= ‘(EnKnU En) v ((E - K)nU fn)
n=1. n=1

C EnNUE-KNCEN 'I\G—U-(E )

= (EAnN)vV tp"l(U).

L
Thus (ﬁp-l(U) CEn U En C(EnNnN)vu <p-l(ﬁ) , and the desired result
n=1

follows from Lemma 15. M

Corollary. Let Y be either the Riemann sphere, the real line, or a
finite-dimensional Euclidean space. If f : H + Y is a continuous
function, if EE€ X, and if ¢: E +~ Y is a boundary function for £,
then @ is of honorary Baire class 2 (E, Y).

Next we show that the foregoing corollary is as strong as
possible in the sense that if E is any subset of X and ¢ is a function
of honorary Baire class 2 mapping E into a suitable space, then there
exists a continuaus function in H having ¢ as a boundary function. A
proof of this result.. at least for real- or vector-valued functions -«-.-

was outlined by Bagemihl and Piranian [2, Theorem 8], in the case
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where E = X. Although the construction given here is carried out much
more explicitly than the constrdction given by Bagémihl and Piranian,
my treatment differs from theirs in only two aspects that are of any
significance. First of all, the proof of the theorem for arbitrary

subsets E of X depends on Lemma 6 of the Introduction. Secondly,

Bagemihl and Piranian say in the last line of their proof that there

is "no difficulty now in extending f continuously to the whole of D
in such a manner that ¢ is a boundary function for f." While this
appears to be all right for real- or vector—valuéd functions, it is
not clear why the extension should be so easy for functions taking
values on the Riemann sphere. Theorem 7 of the present paper shows,
however, that the result can be obtained for functions taking values
on the sphere once it is known for vector-valued functionms.
The following miniature closed graph theorem wiil be a

convenience,

Lemma 16. Suppose that M is a metric space and that u : M> R is a

function having the following properties:

(1) if'{pn} is a convergent sequence of points of M, then

'{u(pn)} converges neither to + « nor to - «;

(ii) if {pn}g M, pEM, and y €R, and if p_ > p and
n
u(p,) >Ys then u(p) = y.

Then u is continuous.

Proof. Suppose that'{pn} is a sequence of points in M convgrging to

a point p € M. Using (i) it is easy to show that'{u(pn)} iz & bounded
sequence. Suppose that'{u(pn)} does not converge to u(p). Then there
exists a subsequence'{u(pn(kj)} that converges to a real number

y + u(p). This, however, contradicts (ii). We conclude that
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- u(p) ;u(p).l

Lemma 17. Let h : R > R be a strictly increasing function such that
h(R) is neither bounded above nor bounded below'. Then there exists a
continuous weakly increasing function 'h* : R > R such that 'h*(h(x)) = X
t;or every x € R..‘

-

Proof. Let Z = h(R). Observe that h'l : Z > R is strictly increasing.

For any x € R, the set (-*, x] N Z is nonempty. Also, h-l((—m, x] n Z)
is bounded above, because if we choose y € Z with x <y, then
h"Y(-=, x] A 2) is bounded above by h™l(y). -

We claim that for every x €R
-1 , -1
27) sup h (,('°°’ x] nZ) = suph ((~=, X)) N Z).
If x ¢ Z, the equation is trivial. Suppose x € Z. Then
-1 -
y <h""(x) = (h(y) < x and h(y) € 2),
so that h((-=, h"1(x))) S (-», x) N Z. Hence
-1 -1
("'°°, h (X))gh ((-oo, X) N 2)3

so that sup h'l((-oo, 5() N Z) z_h'l(X) = sup h'l((-m, X} n Z). The
opposite inequality is trivial, so (27) is established.

We also claim that
. -1, -1
(28) infh "((x, +) nZ) = suph ((-=, x] n Z).

Obviously, inf h'l((x, +o) N Z) > sup h'l((-oo, x] n Z). Take any

y > suph™((-=, X1 n Z). If h(y) < x, then h(y) € (-», x] N Z, and
SO yeh-l'((-eo, X] n Z)-- a contradiction. Thus h(y) > x and

h(y) € (k, +0) N Z. Therefore y € h'l((ﬁc; +o) N Z), and so

infh™l((x, +=) A Z) <y. In view of the choice of y, this implies
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that .
o . e
inf h "((x, +*) n Z) s sup h "((~, .x] nZ),

and (28) is established.

Define
* -1 ,
h (x) = suph "((-, x] nZ).

* *
It is clear that h is weakly increasing and that . h (h(x)) = x for

: * /
every .real x.. The continuity of h can easily be deduced from the

equations

sup h ((-=, X)) = h (X

inf b ((x, +)) = h (X,

which are established as follows:

sup

-1 .
'y<x sup h ((-m, }’] N Z)

sup b’ ((~=, %))

= sup hH((-%, %) A 2)

= sup h'l((-w,fx] n Z)
= h'(x)

n

* i - .
infh'((x; +)) = 105 sup hTN((-e, Y] n D)

inf
y>X

]

inf bl ((y, +) A 2)
= inf hl((x, +=) A 2)
sup hl((==, x] N 2)
h(x). »

n

Theorem 6. Let E be any subset of X and let ¢: E » RY be any
function of honorary Baire class 2(E, Rq). Then there ekists a

-ontinuous function £ : H + RY such that ¢ is a boundary function for

f.
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Proof. Let ¢ : E » RY be a function of Baire class 1(E, Rq) and N a
countable subset of E such that tp(x) = Y(x) for every x €E - N. Let
' {Sn}nzl (with n ¢ m implying Sh 3 sm) be a countable dense subset of

X that includes every integer and every point of N. lLet

t, = 1 if s, is an integer
t = L ifws is not an integer
n on ] n : )
Define
h(x) = z tn if x>0
0zs <x-
. hx) = - t, if x < 0.
xss <0 -

Then h is a strictly increasing function from R into R, and h(RT is

. *
bounded neither above nor beiow. Let h be the function described in
Lemma 17.

Suppose that 0 <y < 1. Then (for fixed Sc)

u_h*(x-}(’l-y)u) —_

is a strictly increasing continuous function of u that approaches
+© as u > +» and -» as u + -», Consequently there exists precisely

one number u(x, y) that satisfies the equation

29) uGe, y) - (REREI - 0
I claim that u(x, y) is a continuous function on
Hy = {<‘><, yY :x,y€Rand 0 <y < 1}. Suppose'{(xn; vt € Hy
and <§cn, yn) > <x, y) € Hy. If u(kn, y) * +oo; then’

-xn = (A-yulx,, yp) 5

3
yn n

and hence . i '
x - (l-y Ju(x_,.y)
¥ .'n n n’ ’‘n

u(x., y)) -h (- Y. ) >,
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which . .contradicts.(29),. Thus L\_. » ¥,) cannot approach +o, A similar
argument shows that u(x > Yo ) ‘cannot approach -», Now assume that

(” ,y)->u €R Then by (29),

. LR S (Lyut) 1)
0 = e WG, V) - W (P
R ey
= g - h

sou = u(x, y). By Lemma 16, u is continuous.
From Lemma 6, there exists a sequence -{gn}n:1 of continuous
functions mapping X into R such that .gn(ic) + Y(x) for each x € E.

n
For n > 2, define -

£ (x, ¥) = Gn(#l) - Wg lx, y)) + () - ynedlg ,; (uCx, 1))

-1 1
whenm-iy,<-i‘

Then fo is continuous on ﬁz n H. By the Tietze extension theorem,
we can assume that fo is defined and continuous on all of H. Let

inf

Th 5 x>s h(x)
n
= Sup
fhn T x<s_ D
n
v, = ,-V(sn) - w(sn) if sne N
v, =0 if s_ € N.

I1f x and y are real numbers, define xV y = I_na;x{x, y}. For <x, y> €H,

set

A, (x, y) = .
..... 1 . S -X

[(1 -ny)VO][(1 ST r + 8 -2s + 2
n

R'n n n i"'n I)VO]V’

Then An is continuous in H. Observe that An(x, y) = 0 when y > %
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Using this fact,.it is:easy to show that, if we set
® .
f = fo + nzleh’
then f is defined and continuous in H. We now show that ¢ is a
boundary function for f;

Let p be any point of “E. The line
(30) x = (h(p) -P) y+p

passes through (p, 0), and the part of it that lies in ﬁi is an arc
at p. We will show that f approaches y(p) along this line. If we
substitute (h(p) - p)y + p for X in the expression for An(x, y), we
[ .
obtain
(31) Ca (X, y) =
1

[ - my) VOI[(1- —
n

. 1
= |rn + R +‘2(§-- (s, - p)

- 2P| ) Vol v,

Ifp é_sn, then h(p) j_ln, and one can verify directly that (31)
vanishes; Ifp > sn; then h(p) i_rn, and again one can verify directly
that (31) vaniéhes. Thus An(x, y) vanishes along that part of the line
(30) lying in H.

Solving (30) for h(p), we find that, along the given line,

_ X (-yp
h(p) SR

. 1o
and hence p ='h" (h(p)) =h'( % y(l Y)Py . Therefore, if 0 <y < 1,

| . . o 1 1
p = u(x, y). So, if {x, y) satisfies (30), n > 2, and =TSy S5

then

£(x, ) = Om@D) - Mg () + (D) - yn@+D)g,, (7).
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Since the coefficients.of gn(p).an¢.gn+1(p) in the above ekpression
.add.up to 1 and since both coefficients.lie in [0;51],-f°(x; y) lies
on the'line,sggmenf joining gn(p) to gn+1(p); and it follows that
. fo(k, y) approaches y(p) as (k; y» approaches p along the line (30).
Since each An vanishes on the part of this line lying in H, f(x, y)
also. approaches y(p) along the line.

Let S be any point of N. We show that f approacheS(p(sm)
along the part of the line

. 2m

= (Arm
(32) x = (— spY *Sp

that lies in H. Again, we first consider the value of‘An along the
_given line. Substituting the value of * given by (32) into the expres-

sion for Ay, we obtain

(33) A x,y) =

5 1 .1
- (1 - - - - -
[(1-ny) VO][(1 -1 lrn LA 2(y 1)(sn_ sV O]Vn.

If S < Spo then Sy < Ty S 0n < Ty and one can verify directly that

(33) vanishes. If S, < S then L, < T S8, <T

0 - and again one can

m,
verify that (33) vanishes. Thus, for n $ m, An(x, y) = 0 when <x, y)
lies on the line (32) and in H.

If we take n = m in (33), we obtain
b, y) = [(1-my)VOlv,.

Therefore.Am(k, y) approaches Vo =<p(sn9 - w(sng along the given line.
Take any <x, y) é.fh’satisfying<(32), and take any a and b

satisfying

(34) a<s_<b.
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B 2
Then h(a) Ay ___m_z__m'_< Ty S h(b), so that .

(h(a) -~ sm)y t sy X < (h(b) -s )y ts0s from which we .deduce that

‘ X .- (l-y)s
h(a) < —_—B h(b)
Since 'h*.is weakly increasing,
* A %.(IQy)sm *
a = h (h(a)) sh (——-—y——-). <h (h(b)) = b.

Since a and b were taken to be any two numbers satisfying (34), we

conclude that

x X (l'Y)-Sm
sy = b ——,

" whence it follows that u(x, y) = Sy Thus

C£(x, y) = m(nrl) - g (s) + ((+D) - yn(atl))g (s )

when {x, y» lies on the given line and }_1 <y <% Consequently
fo(x, y) approaches w(sm) along the line (32). So f approaches w(sm) +

@(s) - ¥(s) = @(s ), and the theorem is proved. W

Theorem 7. Let E be any subset of X and let ¢: E 82 be any
function of honorary Baire class 2(E, Sz) . Then there exists a

continuous function f : H -» s? such that ¢ is a boundary function for

f.

Proof. The proof of this theorem is very similar to that of Theorem 1.
Since S2 gRS, there exists, by Theorem'6, a continuous function

gt H~» R having ¢ as a boundary function. Let

K =.g-1'({v er® |v] =_%})
L= gliver s vl 21 D
F =__g'1'({veR3 : |v|_<_%})
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Let. g, =_'g|K‘. H is homeomgrphic.tQ,Rz, .so by [5, .Lemna 2.9, p. 299],- -

‘ gé can be extended to.a.continuous function

- 3 o |

g sH>{veRr vl o= 5

Define f-l : H-~»> RS - {0} by setting <«
fl(z) = g(z) if z €L
fl(z) = gl(z)A if z €F.

Then, since F and L are closed, f1 is continuous on H. It is easy to

verify that ¢ is a boundary function for f;. Let P : RS - {0} » s?

be the 0-projection onto 52 (see page 11), and let f be the composite
. . . 2

function Po ° fl' ' Then f maps H continuously into S°, and Poo ¢ =

is a boundary function for f. W ' o
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CHAPTER 1I

BOUNDARY FUNCTIONS FOR DISCONTINUOUS FUNCTIONS
6. Boundary Functions for Baire Functions

It is not known whether the set of curvilinear convergence
of a Borel-measurable function defined in H is necessarily a Borel
set. The answer is not known even for functions of Baire class 1.
However, a theorem on boundary functions that is similar to the
corresponding result for continuous functions in H can be proved for

functions of Baire class & in H.

Definition. If A and B are two sets, we will call A and B equivalent
and write A = B if and only if A - B and B -~ A are both countable.

It is easy to check that = is an equivalence relation.

Lemma 18. If A~ E, then S - A = S - E for any set S. If A.n = En

for all n in some countable set N, then

\ )%= \,Bnmd(\A ﬁ(\ﬁ.
n €N

n €N neN * neN

The proof of this lemma is routine.

Definition. An interval of real numbers will be called nondeggnerate

if it contains more than one point.

Lemma 19. Any union of nondegenerate intervals is equivalent to an

————

open set.

57
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‘Proof. .Let & be any family of nondegenerate. intervals. .It will

" .
.suffice to prove that U I- ‘I .is.countable. .We:can write

IEQ. IEX

where’ {Jn} is a countable family of disjoint open intervals. If

!

: *
then X, is an endpoint of Io for some I°€ &. For some n, Io C Jn,
so that x_€ J.. But x ¢J , S0 X 1s an endpoint of J_. Thus

(o) n o n o n
%

I- u I 1is contained in the set of all endpoints of the

1€ &R "

various J_, and the lemma is proved. u

Lemma 20. Let h be a weakly increasing real-valued function on a

nonempty set E S R. Suppose that |x - h(x)| < 1 for every x €E.

Then h can be extended to a weakly increasing real-valued function h1

on R.

Proof. Let e = inf E (é may be -*), For each x € (e, +»), set
hl(x) = sup h((-», x] N E).

Since |t - h(t)| < 1 for each t € E,
t €(-»; x] NE =>h(t) $x + 1,

so h; is finite-valued. If e = -» we are done. If & > -, then

x € E implies h(x) > x -1 > e - 1, so h is bounded below. For

X € (-», e] set
h (x) = inf h(E).

It is easy to verify that h, has the required properties. M
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Lemma 21. Let Y be a metric space, £ : R > Y a function of Baire class
- &(R, Y), and suppose that h : R +~ R is weakly increasing. '}I‘hen there
exists a countable set N &R such that the composite function

fo hlp\_N is of Baire class E(R - N, Y).

Proof. Let N be the set of discontinuities of h. By a well-known
theorem, N must be cobuntable. But then th—N is continuous, so that

£ o (h|p ) = (£ h)|; g is of Baire class ER - N, V). B

Lemma 22, Let Y be a separable arcwise connected metric space, E 'any
metric space, and let ¢: E > Y be a function having the following

g+l

property. For every open set U & Y there exists a set T € P° ~(E) such

that ¢-1(U) CT C_:qfl(ﬁ). Then, if £ > 2, ¢ is of Baire class £(E, Y).

Proof. The proof is similar to that of Lemma 15. Let ®8 be a countable

base for Y, and suppose that W is any open subset of Y. Let
QW) = UelB: TSH.
The argument in the proof of Lemma 15 shows that

W = U u = U .ﬁ.
UeQamw U€E QM)

E+1

For each USG, let T(U) € P ~(E) be chosen so that

¢lwcTwS ¢l @. Then

¢ lton = U qfl(U)g U T(U)

Ue Q) ve Q)

C -1 1
= @M= @M.
UeEAQMW) ¥ ¥
Thus tp-l(W) = U T(U), and since Pg"'l(E) is closed under countable
veqam)
E+l

unions, (p-l(W) € P° "(E). Therefore ¢ is of Baire class £(E, Y). |
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Theorem 8. Let Y be a separable arcwise connected metric space,
f : H+ Y a function of Baire.class E(H, Y) where £ > 1, E a subset of
X, and ¢@: E » Y a boundary function for £. Then \pis of Baire class

g + 1(E, Y).
Proof. Let U be any open subset of Y and let V=Y - U. Set

A =@ ) | B o= ¢ (V)
C = AUB.

1

Observe that An B = ¢. For each x € C, choose an arc yk at x such
that

lim

>x  f(z) = @(x)

ZEY,

?y'xg{z : |z - x| <1}
v - X1 E £l if x €A
v, - mreetm if x € B.

Notice that if x € A and y € B, then " Yy = ¢.

We will say that y, meets Yy in ﬁn provided that vy, and Yy

have subarcs yx' and yy' respectively such that x e Yx' C Hn’

Yy € Yy' g_l'-i-n, and 'yx'r\ yy' $ ¢. Let

L, =xeA: Vn)(3y)yec, y+4 x, and Yy meets vy, in T—I—n)}
Ly = {x€B: (Vn)(INWYEC, y+x, and Yy meets .y, in H)}
M, = {x€ A : (In)(y, meets no Yy (with y ¥ x) in Fl'n)}

M = {xX€ B : (3n) (v, meets no Yy (with y # x) in-'ﬁ'n) 3.

L =

LU L,

MaU Mb

=
"
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Observe that L.a,’ Lb, Ma’ Mb are pairwise disjoint, and that
A= LaUMa and B = LbuMb

For each x € M, let n(x) be a positive integer such that Yx
meets 10 Yy (Wlth y + x) in Hn(x) . Then n > n(x) implies that Yx

meets no y. in H . Let
y n

Kn = Ix €C: Yy meets X , and, if x € M, n > n(x)}.

Then KnE K, for each n, and C = g)l K,

We next show that for each p;sitive integer n and each x € La
there exists a nondegenerate closed interval I?{ such that
X E II;c - La v (X - Kn) . By the definition of La’ there exists
y €C (y £ x) such that Yy meets y, in '}Tn. Let Il:( be the closed
interval having its endpoints at x and y. Let t be any point of Ir;.
We must prove that t € La v (X - Kn) . Ift ¢Kn, we are done. So
assume t € Kn. Then Y, meets Xn, and hence it is clear from Figure 5
that Ye must meet either Yy OF Yy in ﬁ'n. (This argument can be
rigorized by means of Theorem 11.8 on p. 119 in [11].) But, if t € M,
then (because t € Kn) n in(t) , so that this situation,is impossible.
Therefore t 4’. M. Now x € La C A, so, since Yy intersects Yy’ y 41. B.
Hence y € C - B = A, Similarly, since " intersects Yx. or Ty
t€C-B=A, Thus t€EA-M= La’ and we héve shown that
I,EL U X-K).

Let W = U II;. "For each n,

o xeL
a
C C - K
L,EW NCEIL, uX-K)lnc,

and therefore
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Figure 35,

Xn
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Lyel q‘wn) nC
n=

; {;Q [L, uX-K)I¥ncC

= [L,uX- n=1’1<n)] nC

(Laf\ C)U(C—n=1 Kn) =.Lau¢ =.L

at
00
.It follows that La = (rQ Wn) n C. By Lemma 19, each Wn is equivalent

to an open set, so there exists a Ct set G, € X such that

i

La= GanC.

-

A similar argument shows that there exists a GG set Gb € X such that

L = Gb N C.

Next we study the properties of Ma' ‘In doing this, it is
convenient to define a function w : R2 + R by setting n(x, y) = X.
If X €M nKn, then, starting at x and proceeding along Yy let pn(x)
be the first point of )(n that is reached. Define h: tMAN Kn + R
by setting hg(x) = n(pn(k)). If x, x'€ Mn Kn and x < x', then, since
Y, cannot meet Yx' in ﬁn’ it is evident that pn(x) must lie to the )
left of pn(x'); that is, ‘H‘(Pn(X)), < v(pn(ﬁc')) . Thus hg is a strictly

increasing function on M n Kn. Moreover, -
|x - ho(x)| <1 because y, C{z : |z - x| < 1}.

So, by Lemma 20, hg can be extended to a weakly increasing function

hn:x+R. Let

g = £ (), D (x €R).
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f(i;; ilT) is a.function (ofva';) .of Baire.class £(X, Y), so, by Lemma 21,
there exists a countable set. Nn X such that gnIX-N is of Baire class

£(X - Nn’- Y). Let N = nk=j1 Nn‘ ,Then. gn'M-N is of ‘Baire.class
EM - N, V). |

For x €M NK , g (x) = fch;(x),%.) = £(p,(x)). “If x €M, then

for all sufficiently large n, x € MN Kn, so —

lim oy - lim ' _
m g (0 = ST E(R () = wx).
Thus gn|M ; ‘PIM’ so gnlM-N ;‘PlM-N’ hence ‘PIMQN is of Baire class

g+ 1(M - N, Y). It follows that there exists D € p=*2 (X) such that
. 4 |
AnM-N = Gply ) @ = DAM-N.

Obviously AnM = DN M. Now,

L =-LaULb= (Gén C_)U(Gbn Q) = -(GaVGb)n(?’

SO
N AnM=DnM= Dnr(C-L)
DAalC- ((Gu G) N0

-Dn [X - (G, v Gb)]n C.

=
1l

1]

Ga and C‘b are GG" so X - (Ga v Gb)' is FG , and hence
2 C E+2
X-(GauGb)éP(X)_P (x).

Therefore M_ = F N C, where F € P**2(X). Now, G € G4(X) = Q®*(X), and

since £ > 1, (0 € P¥*?(X), so 6, u Fe PP (0. But
A= LuM=(@AC0UEAD = (GuRnC,

so A =SnC, where S € PF’+2 (X). Since every countable set is Fo’ it

is now easy to show that
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A = TnC

for some T € Pg+2(x) . From the definition of C it follows that

T< X - B. Thus we have
-1 -1 _ -1
@ (U) = ASTNECE-B = E-¢@ (V) = ¢ (0.
TNE E'PE+2(E), so Lemma 22 shows that ¢ is of Baire class £ + 1(E, V). B

Corollary. Let Y be a separable arcwise-connected metric space,

f : H~+ Y a Borel-measurable function, E a subset of X, and ¢: E~>Y

a boundary function for £. Then ¢ is Borel-measurable.

Proof; f is of some Baire class g(H, Y), hence ¢ is of Baire class
g + 1(E, Y), hence ¢ is Borel-measurable. M

This corollary raises the question of whether a boundary
function for a Lebesgue-measurable function is necessarily Lebesgue-

measurable, which we answer in the next section.

7. Boundary Functions for Lebesgue-Measurable Functions

i

Suppose that a,s bo’ al,'b1 are extended real numbers, and
that a 0 S bo’ a; < bl’ To make the formalism more convenient we let
() - (-») = 0 and (+») - (+=) = 0. In other respects we adhere to

the usual conventions regarding arithmetic operations that involve

-© OT +=, Let

T(a,, bys 2y, by) = {<x, y> :0<y<1and

=

0

(a1 - ao)y *a X< (b1 - bo)y + bo}.

A set of this form will be called a closed trapezoid. We also

consider ¢ to be a closed trapezoid. A set S will be called a

‘trapezoid if there exists a closed trapezoid T such that T1 csecT,

{
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where T1 denotes the interior of T relative .toFl. .Every trapezoid is
Lebesgue-measurable, though not necéssarily Borel-measurable.
If s, s' are disjoint line segments having endpoints <ao, 0> s

<a;, 1Y , and <a0', 0y, _(al', 1) respectively, where a; sa;'
(i =0, 1), then let

—_—

T(s, s') = T(s', s) = T(ao’fao'; a;, al').

If s = s'; then we let.T(s, s') = T(s', s) = s. In what follows we
will use the symbol X0 s an alternative designation for the x-axis
X. This will enable us to make statements about Xi i-= 0; 1) (where
X, denotes, as before, {<{x, 1) : x € R1).

We omit the proofs of the following two routine lemmas.

Lemma 23. Let theline segments sl', Sys Szs Sy each have one endpoint
on X and the other on X;, and assume that i % j implies that either

S;nsy=gors; =s;. If T(s;, s,) N T(sz, S,) $ ¢, then

T(sy» Sz) - T(sy, S,) U T(sg, S4)

Lemma 24. Let .8 be any set of line segments, each of which has one
endpoint on Xo and the other on Xl’ and no two of which intersect.
Then U T(s, s') is a trapezoid.

s,s'€8 2 -

Let m denote two-dimensional Lebesgue measure in R™. If E

is a measurable subset of some line in R2, let mR'(E) denote the linear
Lebesgue measure of E. Let'_nfe and mi denote two-dimensional exterior
measure and linear exterior measure, respectively; i.e., for any

E R,

m (E) = inf {m(U): E €U and U is open};



67
o

and if E is.a subset of a line L, then
‘ mi(E) = inf {mz(l;l) : E€SUCSL and U is open relative to L}.

Theorem 9. Let &£ be any set of line s.'e'gments, each of which has one

endpoint on Xo and the other on X;5 and no two of which intersect.

Let S = Uat . Then
!

A G
me(b) = T(m&(snxo) +m§(S nXl)).

Proof.” We may assume that L is nonempty. Let e be any positive

number. Choose an open set U& R2 such that S €U and

m(fl).’f_me(S) + €,

Let Ei =SSN Xi (i = 0, 1). Choose sets Gi c )(i that are open relative
C
to Xi such that 13.i & Gi and
L ) .
m (Gi) ;me(Ei) + € (i=0,1).
Let V be the union of all lines L QRZ such that L meets both Go and
G

1° It is easy to show that V is an open set. Furthermore, S €V

and\ln)(i = Gi (i=0, 1). Now let W=UnNY. Then

Wis open, SEWEU, and -

[ C’\ .=
E,CWNX, €6 (i=0,1).

If s, ste L , define s

-m

s' if and only if T(s, s') € W.

It is easy to verify by means of Lemma 23 that = is an equivalence
relation. Let T' be the set of all equivalence classes. We prove that

I is countable.

If s€ L, we let <ai(s), i) be the endpoint of s on X;
(i=0,1). Then

!

s = '{<x, yy € R2 _:_0__<_y.li 1l and x = .(al(s) - ao(s))y + ao(s)}.

I
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Since s is.compact and contained. in.W, there is no difficulty in
showing that there exists 6.5‘ > 0.such that

{¢x,y> €R®:0<sy<1 and

(al(s) - ao(s))y + ao(s) - &s' <X < (a1(s) - ao(s))y + ao(s) * Gs}
< W.

Let Ji(s) = _(ai(s) - &s, ai(s) +&s) Fi =0, 1). A sketch will
rapidly convince the reader that if s, s' € L, Jo(s) s Jo(s') + b,

and Jl(s) r\Jl(s') 3 ¢; then T(s; s') € W, so that s = s'. Thus
Wols) x () AT (s) x Jy(sM) + ¢ =ps =5
For each ‘'C € T', choose s(C) € C and let
QO = T (s(C)) x J;(s(O)).

Then C; $ C, =y Q(C)) n Q(C,) = ¢. Since each Q(C) is a nonempty
open subset of R2, this implies that T is countable.

IfFCeEerT, let

0 - \J 16, s9.

s, s'€C
By Lemma 24, T(C) is a trapezoid. Also,

(35) CET(C) S W.

Suppose that C;, C, €T and C; ¥ C,. We claim that
T(C;) MT(C,) = ¢. Assume that T(C;)NT(C,) + ¢. Then there exist
t ] 1]
S;» 5;' €Cy and s,, s,' €C, such that T(s;, s;') N T(s,, s,") + 0.
By Lemma 22, )
T(sl, 52) - T(sl, sl') v T(sz, .52'.) cw,

so that sy ‘E 5'2; a contradiction. Therefore T(Cl) n T(Cz) = ¢,
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Let K, (C) = T(C) n X; (.= 0, 1).. Then K;(C) is an interval

and

(36) E; e\ x,©cwny, Cg Gi=0,1.
CEr

Furthermore o 4 c, 1mp11es that X, (C;) NK;(C)) = 9. Using the
formula for the area of a trapezmd we find that

U k@) emtc ) ko
(:EF CGT

o

T (m K, (@) +m (K (€)))
cer

D m(T(0) = m(l~) ().

CerT
Lt k@) + (l\,) K, (©)]

CerT
ac (U, | | '
Cer

According to (35), S & U T(C) € W S U, so that
' CET

(37) me(S) <o im(U), jme(S) + g,

Let o

i)

By (36),
(38) L @lE) + miED) <o <7 (G * 1t (G))
<t afE) +lED) re _

Since ¢ is arbitrary, inequalities (37) and (38) imply that
: I Sy %
m(S) = 3 (mg(E ) + mg (E;)) . |

One wonders to what extent a result resembling the foregoing
theorem might be obtainable without the hypothesis that no two of the
line segments intersect. ‘Tlié-following eScample is relevant to this

question. Let Mo be a residual set of measure zero inl)(0 and let M,
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be a.residual set of measure.zero in X;- Let (x 4 ) .be.any point
of Hl We claim that therc 15 a line.segment passmg through <x s Y ‘)

that has one endpoint in M/ and the other in M,. For 6 € (0, m), let

N0
F (8)

((1 - yo) ctn 6 + xo, 1) and

<xo -y, ctn 6, 0Y.

Then F; is a homeomorphism of (0, 7) onto X;s SO F;I(Mo) and Fil(Ml)
are both,residual sets in (0, 7). Choose a € F;]‘ (M) nFIl(Ml) . Let

L be the line whose equation is
X = X+ (y-yo) ctn a.

Then L passes through the points (xo, ¥y » Fole) and Fy(a), so that

L nﬁl is the desired line segment. Let £ be the set of all line

segments having one endpoint in M0 and the other in Ml' Let S = \.)ﬁ
Then S N Xo and S N X, both have measure zero, but, as we have just:

[ .
shown, Hl € S, so that S has infinite measure. See Problem 5 at the

end of this paper.

Lemma 25. For every € > 0 there exists a strictly increasing real-
valued function h on R such that h(R) has measure zero, and, for every

real x, |x - h(x)| <.

Proof. For each integer n, let I = [ne, (n + 1)e]. Then u I_ =R.
There exists a strictly increasing function £ : [0, 11 » [On—r]o such
that mg’(f([o' 1]))= 0. For example, such a funccion may be defined

as follows. Any number in [0 1) may be wrltten in ¢~ form

3485870002, . (binary dec1ma1) s

where the decimal does not end in an infinite unbroken string of 1's.

!
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Set. .
f(falazas...an...) = ~b1b2b3... Db ... (ternary decimal),
wherebi=01f a; =Oandbi=21f a; = 1;

Set £(1) 1. Then f maps [0, 1] into the Cantor ternary set, so

mg_’(f([O, 1])) = 0. It is easily shown that f is strictly increasing.
For each n, it is easy to obtain from f a function fn : In > In

such that fn is strictly increasing and mg'(fn(In)) = 0, Set
h(x) = £(x) for x €(ne, (0 + 1e].
There is no difficulty in proving that h has the required properties. ]

Theorem 10. There exists an indexed family’ {Yx}x € X of simple arcs

such that
(i) for each x € X, yk is an arc at x
(i) xty =Drnv, =9¢

(iii) \ , Yy is a set of measure zero.
X € X

Proof. For each natural mumber n, l‘et‘ hn : R+ R be a strictly
increasing function such that hn(R) haé measure zero and, for every X,
|x - h (x) | < % For every X € R, let s (x) be the.line segment
joining the point <hn(x) s %> to the point <hn+1($c) s rr];-'_1> Since
h (k) <h (x,) =>x, 5 x,=>h . (x). <h (),
we see that Xy % icz implies sn(kl) I sn(ﬁiz) = ¢I. Let
S, = Usn(k) : XE€ R}. Then
S n X C;{(Sc; 2% : xeh (®)}
and s nx, it ) xen @,

9 Y | _ .
som (Sn n Xn) =m (Snn Xn+1) = 0. It is easy to deduce from
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Theorem.9 that

!

11 L1k 2 L

m (S = (3~ ETPT) 7 m Sy N X+ m (5 n Xn-_r-_l)) = 0.
. _. <o . .. . . 1> ) .
For x € X, }et Y = _ix}ug sn(x). Since <hn(x), = ; X, Y, is
an arc at X.

mecheJX v) sm (X +m cH 5.)

<m (X) +  m (S ) = 0,
e h=] € B

so \ J v, is a set of measure zero. B
x€eX

Corollary. Let (pbe an arbitrary function mapping X into any topologi-
cal space Y having an element called 0. Then there exists a function

f : H~> Y such that £(z) = 0 almost everywhere and @ is a boundary

function for f. )

Proof. If {Yx}xexfis the family of arcs described in Theorem 10, let

£(z)
£(z)

0 if z is in no Yx

W (x) if 2 €vy-

Then f is the desired function.

Corollary. There exists a real-valued Lebesgue-measurable function £

defined in H having a nonmeasurable boundary function defined on X.



SOME UNSOLVED PROBLEMS

1. If A is an arbitrary set of type E e, in X, does there necessarily
exist a real-wlued continuous function f defined in H having A as

its set of curvilinear convergence? If ¢ is an arbitrary real-valued
function of honorary Baire class 2 on A does there eXist a continuous
real-valued function f defined in H having A as its set of curvilinear

convergence and ¢ as a boundary function? e

. 2. (First proposed by J. E. McMillan [10]). If A is any set of type
F;s in X and if ¢ is any function of honorary Baire class 2(A, SZ),
does there necessarily exist a continuous function f : H~> S having

A as its set of curvilinear convergence and  as a boundary function?

3. If f is a real-valued Borel-measurable function defined in H, is

the set of curvilinear convergence of f necessarily a Borel set? What

if £ is assumed to be of Baire class 1°7

4, Let S = {(x, y, z) € R3 : 2> 0}, If fis a function defined
in S, we define the set of curvilinear convergence of f in the obvious
way. If f is continuous, is its set of curvilinear convergence

necessarily a Borel set? Is it necessarily of type FGG?

5. Let &£ be a set of line segments each having one endpoint on X
and the other on Xl, and let S = U‘C Assume that S is a Borel set.

If m (S nX ) and m (S n Xl) are known what lower bound can be given
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for m(S)?. A solution to. this problem might be helpful in attacking a

problem of ‘Bagemihl, Piranian, and Young [3, Problem.1].



10.

11.

12,

/
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